World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Spatial and Temporal Variability of Snow Accumulation Rate on the East Antarctic Ice Divide Between Dome Fuji and Epica Dml : Volume 5, Issue 4 (28/11/2011)

By Fujita, S.

Click here to view

Book Id: WPLBN0004022453
Format Type: PDF Article :
File Size: Pages 25
Reproduction Date: 2015

Title: Spatial and Temporal Variability of Snow Accumulation Rate on the East Antarctic Ice Divide Between Dome Fuji and Epica Dml : Volume 5, Issue 4 (28/11/2011)  
Author: Fujita, S.
Volume: Vol. 5, Issue 4
Language: English
Subject: Science, Cryosphere
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Fujita, K., Enomoto, H., Karlin, T., Fukui, K., Surdyk, S., Wilhelms, F.,...Motoyama, H. (2011). Spatial and Temporal Variability of Snow Accumulation Rate on the East Antarctic Ice Divide Between Dome Fuji and Epica Dml : Volume 5, Issue 4 (28/11/2011). Retrieved from http://www.ebooklibrary.org/


Description
Description: National Institute of Polar Research, Research Organization of Information and Systems, Tokyo, Japan. To better understand the spatio-temporal variability of the glaciological environment in Dronning Maud Land (DML), East Antarctica, a 2800-km-long Japanese-Swedish traverse was carried out. The route includes ice divides between two ice-coring sites at Dome Fuji and EPICA DML. We determined the surface mass balance (SMB) averaged over various time scales in the late Holocene based on studies of snow pits and firn cores, in addition to radar data. We find that the large-scale distribution of the SMB depends on the surface elevation and continentality, and that the SMB differs between the windward and leeward sides of ice divides for strong-wind events. We suggest that the SMB is highly influenced by interactions between the large-scale surface topography of ice divides and the wind field of strong-wind events that are often associated with high-precipitation events. Local variations in the SMB are governed by the local surface topography, which is influenced by the bedrock topography. In the eastern part of DML, the accumulation rate in the second half of the 20th century is found to be higher by ~15 % than averages over longer periods of 722 a or 7.9 ka before AD 2008. A similar increasing trend has been reported for many inland plateau sites in Antarctica with the exception of several sites on the leeward side of the ice divides.

Summary
Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML

Excerpt
Alley, R., Clark, P., Huybrechts, P., and Joughin, I.: Ice-sheet and sea level changes, Science, 310, 456–460, doi:10.1126/science.1114613, 2005.; Anschütz, H., Müller, K., Isaksson, E., McConnell, J. R., Fischer, H., Miller, H., Albert, M., and Winther, J.-G.: Revisiting sites of the South Pole Queen Maud Land Traverses in East Antarctica: Accumulation data from shallow firn cores, J. Geophys. Res., 114, D24106, doi:10.1029/2009JD012204, 2009.; Anschütz, H., Sinisalo, A., Isaksson, E., McConnell, J. R., Hamran, S.-E., Bisiaux, M. M., Pasteris, D., Neumann, T. A. and Winther, J.-G.: Variation of accumulation rates over the last eight centuries on the East Antarctic Plateau derived from volcanic signals in ice cores, J. Geophys. Res., 116, D20103, doi:10.1029/2011JD015753, 2011; Arthern, R. J., Winebrenner, D. P., and Vaughan, D.G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res, 111, D06107, doi:10.1029/2004JD005667, 2006.; Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry, in: National Snow and Ice Data Center. Digital media, Boulder, Colorado USA, 2009.; Birnbaum, G., Freitag, J., Brauner, R., König-Langlo, Schulz, G. E., Schulz, E., Kipfstuhl, S., Oerter, H., Reijmer, C. H., Schlosser, E., Faria, S. H., Ries, H., Loose, B., Herber, A., Duda, M. G., Powers, J. G., Manning, K. W., and Van den Broeke, M. R.: Strong-wind events and their influence on the formation of snow dunes: Observations from Kohnen Station, Dronning Maud Land, Antarctica, J. Glaciol., 56, 891–902, doi:10.3189/002214310794457272, 2010.; Braaten, D. A.: Direct measurements of episodic snow accumulation on the Antarctic polar plateau, J. Geophys. Res., 105, 10,119–10,128, doi:10.1029/2000JD900099, 2000.; Bromwich, D. H., Snowfall in high southern latitudes, Rev. Geophys., 26, 149–168, doi:10.1029/RG026i001p00149, 1988.; Bromwich, D. H., Guo, Z., Bai, L., and Chen, Q.-S.: Modeled Antarctic precipitation. Part I: Spatial and temporal variability, J. Climate, 17, 427–447, 2.0.CO;2>doi:10.1175/1520-0442(2004)017<0427:MAPPIS>2.0.CO;2,2004.; Chen, J., Wilson, C., Blankenship, D., and Tapley, B.: Antarctic mass rates from GRACE, Geophys. Res. Lett., 33, L11502, doi:10.1029/2006GL026369, 2006.; Cole-Dai, J., Mosley-Thompson, E., and Thompson, L. G.: Quantifying the Pinatubo volcanic signal in south polar snow, Geophys. Res. Lett., 24 (21), 2679–2682, doi:10.1029/97GL02734, 1997.; Cullather, R. I., Bromwich, D. H., and Van Woert M. L.: Spatial and temporal variability of Antarctic Precipitation from atmospheric methods, J. Climate, 11, 334–367, 1998.; Davis, C., Li, Y., McConnell, J., Frey, M., and Hanna, E.: Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise, Science, 308, 5730, 1898–1901, doi:10.1126/science.1110662, 2005.; Eisen, O., Frezzotti, M., Genthon, C., Isaksson, E., Magand, O., Van den Broeke, M. R., Dixon, D.A., Ekaykin, A., Holmlund, P., Kameda, T., Karlöf, L., Kaspari, S., Lipenkov, V., Oerter, H., Takahashi, S., and Vaughan, D. G.: Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarc

 

Click To View

Additional Books


  • Vital Role of Daily Temperature Variabil... (by )
  • Tornado-type Stationary Vortex with Nonl... (by )
  • Application of the Gaussian Anamorphosis... (by )
  • Numerical Implementation and Oceanograph... (by )
  • Imbalance of Energy and Momentum Source ... (by )
  • Bimodal Albedo Distributions in the Abla... (by )
  • Multi-scale Atmospheric Environment Mode... (by )
  • Wave Climate in the Arkona Basin, the Ba... (by )
  • Science (by )
  • Jahresbericht Der Schlesischen Gesellsch... Volume: 72. (1894) (by )
  • Jahresbericht Der Schlesischen Gesellsch... Volume: 31. (1853) (by )
  • Transition of Flow Regime Along a Marine... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.