World Library  
Flag as Inappropriate
Email this Article

Spicule (solar physics)

Article Id: WHEBN0000865545
Reproduction Date:

Title: Spicule (solar physics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Corona, Moreton wave, Chromosphere, Sun, Plage (astronomy)
Collection: Solar Phenomena
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Spicule (solar physics)

Spicules, visible as dark tubes. Solar active region 10380, June 2004

In solar physics, a spicule is a dynamic jet of about 500 km diameter in the chromosphere of the Sun. It moves upwards at about 20 km/s from the photosphere. They were discovered in 1877 by Father Angelo Secchi of the Vatican Observatory in Rome.

Contents

  • Description 1
  • Prevalence 2
  • Causes 3
  • References 4
  • Literature 5
  • External links 6

Description

Spicules last for about 15 minutes;[1] at the solar limb they appear elongated (if seen on the disk, they are known as "mottles" or "fibrils"). They are usually associated with regions of high magnetic flux; their mass flux is about 100 times that of the solar wind. They rise at a rate of 20 km/s (or 72,000 km/h) and can reach several thousand kilometers in height before collapsing and fading away.

Prevalence

There are about 300,000 active spicules at any one time on the Sun's chromosphere, amounting to about 1% of the Sun's surface.[1] An individual spicule typically reaches 3,000-10,000 km altitude above the photosphere.[2]

Causes

Bart De Pontieu (Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, California, United States), Robert Erdélyi and Stewart James (both from the University of Sheffield, United Kingdom) hypothesised in 2004 that spicules formed as a result of P-mode oscillations in the Sun's surface, sound waves with a period of about five minutes that causes the Sun's surface to rise and fall at several hundred meters per second (see helioseismology). Magnetic flux tubes that tilted away from the vertical can focus and guide the rising material up into the solar atmosphere to form a spicule. There is still however some controversy about the issue in the solar physics community.

References

  1. ^ a b Freedman, Roger A.; Kaufmann III, William J. (2008). Universe. New York, USA: W. H. Freeman and Company. p. 762.  
  2. ^ §1, Two Dynamical Models for Solar Spicules, Paul Lorrain and Serge Koutchmy, Solar Physics 165, #1 (April 1996), pp. 115–137, doi:10.1007/BF00149093, Bibcode: 1996SoPh..165..115L.

Literature

  • De Pontieu, B., Erdélyi, R. and James, S: Solar chromospheric spicules from the leakage of photospheric oscillations and flows In: Nature. 430/2004, p. 536–539, ISSN 0028-0836

External links

  • Astronomy Picture of the Day November 2, 2008
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.