World Library  
Flag as Inappropriate
Email this Article

Comparison of Chernobyl and other radioactivity releases

Article Id: WHEBN0008958957
Reproduction Date:

Title: Comparison of Chernobyl and other radioactivity releases  
Author: World Heritage Encyclopedia
Language: English
Subject: Chernobyl disaster, Kopachi, Chernobyl Shelter Fund, Chernobyl Recovery and Development Programme, Pripyat amusement park
Collection: Chernobyl Disaster, Nuclear Chemistry
Publisher: World Heritage Encyclopedia

Comparison of Chernobyl and other radioactivity releases

This article compares the radioactivity release and decay from the Chernobyl disaster with various other events which involved a release of uncontrolled radioactivity.


  • Chernobyl compared to background radiation 1
  • Chernobyl compared with an atomic bomb 2
  • Chernobyl compared with Tomsk-7 3
  • Chernobyl compared to Fukushima Daiichi 4
  • Chernobyl compared with the Goiânia accident 5
  • Chernobyl compared with the Three Mile Island accident 6
  • Chernobyl compared with criticality accidents 7
    • Process accidents 7.1
    • Reactor accidents 7.2
  • See also 8
  • References 9

Chernobyl compared to background radiation

The external relative gamma dose for a person in the open near the Chernobyl disaster site. The intermediate lived fission products like Cs-137 contribute nearly all of the gamma dose now after a number of decades have past, see opposite.
The impact of the different isotopes on the radioactive contamination of the air soon after the accident. Drawn using data from the OECD report [1] and the second edition of 'The radiochemical manual'.

Natural sources of radiation are very prevalent in the environment, and come from cosmic rays, food sources (bananas have a particular high source), radon gas, granite and other dense rocks, and others. The collective radiation background dose for natural sources in Europe is about 500,000 man Sieverts per year. The total dose from Chernobyl is estimated at 80,000 man sieverts, or roughly 1/6 as much.[1] However, some individuals, particular in areas adjacent the reactor, received significantly higher doses.

Chernobyl's radiation was detectable across Western Europe. Average doses received ranged from 0.02 mrem (Portugal) to 38 mrem (portions of Germany).[1]

Chernobyl compared with an atomic bomb

Far fewer people died as an immediate result of the Chernobyl event than the immediate deaths WHO and create ~ 41,000 excess cancers according to the International Journal of Cancer, with, depending on treatment, not all cancers resulting in death.[2][3] Due to the differences in half-life the different radioactive fission products undergo exponential decay at different rates. Hence the isotopic signature of an event where more than one radioisotope is involved will change with time.

Some comments have been made in which the radioactive release of the Chernobyl event is claimed to be 300[4] or 400[5] times that of the bomb dropped on Hiroshima. The work of SCOPE[6][7] suggests that the two events can not be simply compared with a number suggesting that one was XX times larger than the other.

The radioactivity released at Chernobyl tended to be more long lived than that released by a bomb detonation hence it is not possible to draw a simple comparison between the two events. Also, a dose of radiation spread over many years (as is the case with Chernobyl) is much less harmful than the same dose received over a short period.

The relative size of the Chernobyl release when compared with the release due to a hypothetical ground burst of a bomb similar to the Fat Man device dropped on Nagasaki.
Isotope Ratio between the release due to the bomb and the Chernobyl accident
90Sr 1:87
137Cs 1:890
131I 1:25
133Xe 1:31
A comparison of the gamma dose rates due to the Chernobyl accident and the hypothetical nuclear weapon.
Normalized to the same Cs-137 level. (logarithmic scale).
Normalized to the same dose rate for day one.
Normalized to the same Cs-137 level (dose rate on day 10000).

The graph of dose rate as a function of time for the bomb fallout was done using a method similar to that of T. Imanaka, S. Fukutani, M. Yamamoto, A. Sakaguchi and M. Hoshi, J. Radiation Research, 2006, 47, Suppl A121-A127. Our graph exhibits the same shape as that obtained in the paper. The bomb fallout graph is for a ground burst of an implosion-based plutonium bomb which has a depleted uranium tamper. The fission was assumed to have been caused by 1 MeV neutrons and 20% occurred in the 238U tamper of the bomb. It was assumed, for the sake of simplicity, that no plume separation of the isotopes occurred between the detonation and the deposit of radioactivity. The following gamma-emitting isotopes are modeled 131I, 133I, 132Te, 133I, 135I, 140Ba, 95Zr, 97Zr, 99Mo, 99mTc, 103Ru, 105Ru, 106Ru, 142La, 143Ce, 137Cs, 91Y, 91Sr, 92Sr, 128Sb and 129Sb. The graph ignores the effects of beta emission and shielding. The data for the isotopes was obtained from the Korean table of the isotopes. The graphs for the Chernobyl accident were computed by an analogous method.

A ground burst of a nuclear weapon creates considerably more local deposited fallout than the air bursts used at Hiroshima or Nagasaki. This is due in part to Neutron activation of ground soil and greater amounts of soil being sucked into the nuclear fireball in a ground burst than in a high air burst. In the above neutron activation is neglected, and only the fission product fraction of the total activity resulting from the ground burst is shown.

Chernobyl compared with Tomsk-7

The release of radioactivity which occurred at Tomsk-7 (an industrial nuclear complex located in Seversk rather than the city of Tomsk) in 1993 is another comparison with the Chernobyl release. During reprocessing activities, some of the feed for the second cycle (medium active part) of the PUREX process escaped in an accident involving red oil. According to the IAEA it was estimated that the following isotopes were released from the reaction vessel:[8]

  • 106Ru 7.9 TBq
  • 103Ru 340 GBq
  • 95Nb 11.2 TBq
  • 95Zr 5.1 TBq
  • 137Cs 505 GBq (estimated from the IAEA data)
  • 141Ce 370 GBq
  • 144Ce 240 GBq
  • 125Sb 100 GBq
  • 239Pu 5.2 GBq

It is important to note that the very short lived isotopes such as 140Ba and 131I were absent from this mixture, and the long lived 137Cs was only at a small concentration. This is because it is not able to enter the ruthenium (later extracted by dibutyl hydrogen phosphate). Because the very short lived radioisotopes and the relatively long lived caesium isotopes are either absent or in low concentrations the shape of the dose rate vs. time graph is different from Chernobyl both for short times and long times after the accident.

The size of the radioactive release at Tomsk-7 was much smaller, and while it caused moderate environmental contamination it did not cause any early deaths.

Normalized to the same first day dose rate. (logarithmic scale).

Chernobyl compared to Fukushima Daiichi

See - Comparison of Fukushima and Chernobyl nuclear accident.

Chernobyl compared with the Goiânia accident

While both events released 137Cs, the isotopic signature for the Goiânia accident was much simpler.[9] It was a single isotope which has a half-life of about 30 years. To show how the activity vs. time graph for a single isotope differs from the dose rate due to Chernobyl (in the open air) the following chart is shown with calculated data for a hypothetical release of 106Ru.

Normalized to the same first day dose rate. (logarithmic scale).

Chernobyl compared with the Three Mile Island accident

Three Mile Island-2 was an accident of a completely different type from Chernobyl. Chernobyl was a design flaw-caused power excursion causing a steam explosion resulting in a graphite fire, uncontained, which lofted radioactive smoke high into the atmosphere; TMI was a slow, undetected leak that lowered the water level around the nuclear fuel, resulting in over a third of it shattering when refilled rapidly with coolant. Unlike Chernobyl, TMI-2's reactor vessel did not fail and contained almost all of the radioactive material. Containment at TMI did not fail. A small quantity of radioactive gases from the leak were vented into the atmosphere through specially designed filters under operator control. A government report concluded that the accident caused no increase in cancer rates for local residents.[10]

Chernobyl compared with criticality accidents

During the time between the start of the Manhattan project and the present day, a series of accidents have occurred in which nuclear criticality has played a central role. The criticality accidents may be divided into two classes. For more details see nuclear and radiation accidents. A review of the topic was published in 2000, "A Review of Criticality Accidents" by Los Alamos National Laboratory (Report LA-13638), May 2000. Coverage includes United States, Russia, United Kingdom, and Japan. Also available at this page, which also tries to track down documents referenced in the report.

  • Press release on a report on criticality accidents from Los Alamos National Laboratory
  • List of radiation accidents
  • U.S. report from 1971 on criticality accidents to date

Process accidents

In the first class (process accidents) during the processing of fissile material, accidents have occurred when a critical mass has been created by accident. For instance at Charlestown, Rhode Island, United States on July 24, 1964 one death occurred and at Tokaimura, Japan, nuclear fuel reprocessing plant, on September 30, 1999[11] two deaths and one non fatal overexposure occurred as result of accidents where too much fissile matter was placed in a vessel. These accidents tend to lead to very high doses due to direct irradiation of the workers within the site, but due to the inverse square law the dose suffered by members of the general public tends to be very small. Also very little environmental contamination normally occurs as a result of these accidents. A release of radioactivity occurred as a result of the Tokaimura event. The building in which the accident occurred was not designed as a containment building, yet it was able to retard the spread of radioactivity. Because the temperature rise in the nuclear reaction vessel was small, the majority of the fission products remained in the vessel.

Reactor accidents

In this type of accident a reactor or other critical assembly releases far more fission power than was expected, or it becomes critical at the wrong moment in time. The series of examples of such events include one in an experimental facility in Buenos Aires, Argentina, on September 23, 1983 (one death)[12] and during the Manhattan Project several people were irradiated (two, Harry K. Daghlian and Louis Slotin, fatally) during "tickling the dragon's tail" experiments. These accidents tend to lead to very high doses due to direct irradiation of the workers within the site, but due to the inverse square law the dose suffered by members of the general public tends to be very small. Also very little environmental contamination normally occurs as a result of these accidents. For instance at Sarov according to the IAEA report (2001)[13] the radioactivity remained confined to within the actinide metal objects which were part of the experimental system. Even the SL-1 accident failed to release much radioactivity outside the building in which it occurred.

See also


  1. ^ a b "Chernobyl — Limited health impacts - Springer". 1987-06-01. Retrieved 2014-02-04. 
  2. ^ Health effects of the Chernobyl accident: an overview
  3. ^ Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident
  4. ^ Comparison of Damage among Hiroshima/Nagasaki, Chernobyl, and Semipalatinsk.
  5. ^ Hell on Earth. The Guardian. Wednesday April 26, 2006.
  6. ^ Sources of environmental radioactivity
  7. ^ Sources of environmental radioactivity. Note, this original link is now dead.
  8. ^ IAEA Publications - Details
  9. ^ IAEA Publications - Details
  10. ^ "Three Mile Island". 1990-09-01. Retrieved 2014-02-04. 
  11. ^ World Nuclear Association
  12. ^
  13. ^ The criticality accident in Sarov
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.