World Library  
Flag as Inappropriate
Email this Article

Potassium oxide

Article Id: WHEBN0000224729
Reproduction Date:

Title: Potassium oxide  
Author: World Heritage Encyclopedia
Language: English
Subject: Bioglass, Potassium peroxide, Rubidium oxide, Potassium amide, Oxides
Collection: Common Oxide Glass Components, Deliquescent Substances, Oxides, Potassium Compounds
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Potassium oxide

Potassium oxide
Potassium oxide spacefilling model
Names
IUPAC name
Potassium oxide
Systematic IUPAC name
Potassium oxidopotassium
Other names
Dipotassium monoxide, Potash
Identifiers
 N
ChemSpider  N
EC number 235-227-6
Jmol-3D images Image
MeSH
UNII  N
Properties
K2O
Molar mass 94.20 g·mol−1
Appearance Pale yellow solid
Odor Odorless
Density 2.32 g/cm3 (20 °C)[1]
2.13 g/cm3 (24 °C)[2]
Melting point 740 °C (1,360 °F; 1,010 K) [2]
decomposes from 300 °C[1]
Reacts[1] forming KOH
Solubility Soluble in EtOH, ether[2]
Structure
Antifluorite cubic, cF12[3]
Fm3m, No. 225[3]
a = 6.436 Å[3]
α = 90°, β = 90°, γ = 90°
Tetrahedral (K+)
Cubic (O2−)
Thermochemistry
83.62 J/mol·K[4]
94.03 J/mol·K[4]
−363.17 kJ/mol[1][4]
−322.1 kJ/mol[1]
Hazards
Main hazards Corrosive, reacts violently with water
Safety data sheet ICSC 0769
Related compounds
Other anions
Potassium sulfide
Other cations
Lithium oxide
Sodium oxide
Rubidium oxide
Caesium oxide
Related potassium oxides
Potassium peroxide
Potassium superoxide
Related compounds
Potassium hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Potassium oxide (K2O) is an ionic compound of potassium and oxygen. This pale yellow solid, the simplest oxide of potassium, is a rarely encountered, highly reactive compound. Some materials of commerce, such as fertilizers and cements, are assayed assuming the percent composition that would be equivalent to K2O.

Contents

  • Production 1
  • Properties and reactions 2
  • Term use in industry 3
  • References 4
  • External links 5

Production

Potassium oxide is produced from the reaction of oxygen and potassium; this reaction affords potassium oxide, K2O. Treatment of the peroxide with potassium produces the oxide:[5]

K2O2 + 2 K → 2 K2O

Alternatively and more conveniently, K2O is synthesized by heating potassium nitrate with metallic potassium:

2 KNO3 + 10 K → 6 K2O + N2

Potassium hydroxide cannot be further dehydrated to the oxide but it can react with molten potassium to produce it, releasing hydrogen as a byproduct.

Properties and reactions

K2O crystallises in the antifluorite structure. In this motif the positions of the anions and cations are reversed relative to their positions in CaF2, with potassium ions coordinated to 4 oxide ions and oxide ions coordinated to 8 potassium.[6][7] K2O is a basic oxide and reacts with water violently to produce the caustic potassium hydroxide. It is deliquescent and will absorb water from the atmosphere, initiating this vigorous reaction.

Term use in industry

The chemical formula K2O (or simply 'K') is used in several industrial contexts: the N-P-K numbers for fertilizers, in cement formulas, and in glassmaking formulas. Although K2O is the correct formula for potassium oxide, potassium oxide is not used directly in these products. Normally potassium carbonate or some other potassium compound is used. For example, potassium oxide is about 83% potassium by weight, while potassium chloride is only 52%. Potassium chloride provides less potassium than an equal amount of potassium oxide. Thus, if a fertilizer is 30% potassium chloride by weight, its standard potassium rating, based on potassium oxide, would be only 18.8%.

References

  1. ^ a b c d e Anatolievich, Kiper Ruslan. "potassium oxide". http://chemister.ru. Retrieved 2014-07-04. 
  2. ^ a b c Lide, David R., ed. (2009).  
  3. ^ a b c Wyckoff, Ralph W.G. (1935). The Structure of Crystals. American Chemical Society (2nd ed.) (Reinhold Publishing Corp.). p. 25. 
  4. ^ a b c Dipotassium oxide in Linstrom, P.J.; Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD. http://webbook.nist.gov (retrieved 2014-07-04)
  5. ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  6. ^  
  7. ^ Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.