World Library  
Flag as Inappropriate
Email this Article

Quadratic field

Article Id: WHEBN0000454781
Reproduction Date:

Title: Quadratic field  
Author: World Heritage Encyclopedia
Language: English
Subject: Quadratic integer, Quadratic reciprocity, Class number formula, Euclidean domain, Heegner number
Collection: Algebraic Number Theory, Field Theory
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Quadratic field

In algebraic number theory, a quadratic field is an algebraic number field K of degree two over Q, the rational numbers. The map d ↦ Q(d) is a bijection from the set of all square-free integers d ≠ 0, 1 to the set of all quadratic fields. If d > 0 the corresponding quadratic field is called a real quadratic field, and for d < 0 an imaginary quadratic field or complex quadratic field, corresponding to whether it is or not a subfield of the field of the real numbers.

Quadratic fields have been studied in great depth, initially as part of the theory of binary quadratic forms. There remain some unsolved problems. The class number problem is particularly important.

Contents

  • Ring of integers 1
  • Discriminant 2
  • Prime factorization into ideals 3
  • Quadratic subfields of cyclotomic fields 4
    • The quadratic subfield of the prime cyclotomic field 4.1
    • Other cyclotomic fields 4.2
  • Orders of quadratic number fields of small discriminant 5
  • See also 6
  • Notes 7
  • References 8
  • External links 9

Ring of integers

Discriminant

For a nonzero square free integer d, the discriminant of the quadratic field K=Q(d) is d if d is congruent to 1 modulo 4, and otherwise 4d. For example, when d is −1 so that K is the field of so-called Gaussian rationals, the discriminant is −4. The reason for this distinction relates to general algebraic number theory. The ring of integers of K is spanned over the rational integers by 1 and d only in the second case, while in the first case it is spanned by 1 and  (1 + d)/2.

The set of discriminants of quadratic fields is exactly the set of fundamental discriminants.

Prime factorization into ideals

Any prime number p gives rise to an ideal pOK in the ring of integers OK of a quadratic field K. In line with general theory of splitting of prime ideals in Galois extensions, this may be

p is inert
(p) is a prime ideal
The quotient ring is the finite field with p2 elements: OK/pOK = Fp2
p splits
(p) is a product of two distinct prime ideals of OK.
The quotient ring is the product OK/pOK = Fp × Fp.
p is ramified
(p) is the square of a prime ideal of OK.
The quotient ring contains non-zero nilpotent elements.

The third case happens if and only if p divides the discriminant D. The first and second cases occur when the Kronecker symbol (D/p) equals −1 and +1, respectively. For example, if p is an odd prime not dividing D, then p splits if and only if D is congruent to a square modulo p. The first two cases are in a certain sense equally likely to occur as p runs through the primes, see Chebotarev density theorem.[1]

The law of quadratic reciprocity implies that the splitting behaviour of a prime p in a quadratic field depends only on p modulo D, where D is the field discriminant.

Quadratic subfields of cyclotomic fields

The quadratic subfield of the prime cyclotomic field

A classical example of the construction of a quadratic field is to take the unique quadratic field inside the cyclotomic field generated by a primitive p-th root of unity, with p a prime number > 2. The uniqueness is a consequence of Galois theory, there being a unique subgroup of index 2 in the Galois group over Q. As explained at Gaussian period, the discriminant of the quadratic field is p for p = 4n + 1 and −p for p = 4n + 3. This can also be predicted from enough ramification theory. In fact p is the only prime that ramifies in the cyclotomic field, so that p is the only prime that can divide the quadratic field discriminant. That rules out the 'other' discriminants −4p and 4p in the respective cases.

Other cyclotomic fields

If one takes the other cyclotomic fields, they have Galois groups with extra 2-torsion, and so contain at least three quadratic fields. In general a quadratic field of field discriminant D can be obtained as a subfield of a cyclotomic field of D-th roots of unity. This expresses the fact that the conductor of a quadratic field is the absolute value of its discriminant, a special case of the Führerdiskriminantenproduktformel.

Orders of quadratic number fields of small discriminant

The following table shows some orders of small discriminant of quadratic fields, together with some degenerate cases when the discriminant is a square and the corresponding quadratic extension of Z is not an integral domain.

Order Discriminant Class number Units Comments
Z[√−5] −20 2 ±1 Ideal classes (1), (2, 1+√−5)
Z[(1+√−19)/2] −19 1 ±1 A P.I.D. but not Euclidean
Z[2√−1] −16 1 ±1 Non-maximal order
Z[(1+√−15)/2] −15 2 ±1 Ideal classes (1), (2, (1+√−15)/2)
Z[√−3] −12 1 ±1 Non-maximal order
Z[(1+√−11)/2] −11 1 ±1 Euclidean
Z[√−2] −8 1 ±1 Euclidean
Z[(1+√−7)/2] −7 1 ±1 Kleinian integers
Z[√−1] −4 1 ±1, ±i cyclic of order 4 Gaussian integers
Z[(1+√−3)/2] −3 1 ±1, (±1±√−3)/2 Eisenstein integers
Z[x]/(x2) 0 1 ±1 Has nilpotent elements
Z×Z=Z[x]/(x2x) 1 1 (±1, ±1) Not a domain
Z[√1]=Z[x]/(x2–2x) 4 1 ±1, ±√1 Not a domain
Z[(1+√5)/2] 5 1 ±((1+√5)/2)n (norm −1n)
Z[√2] 8 1 ±(1+√2)n (norm −1n)
Z[x]/(x2–3x) 9 1 ±1 Not a domain
Z[√3] 12 1 ±(2+√3)n (norm 1)
Z[(1+√13)/2] 13 1 ±((3+√13)/2)n (norm −1n)
Z[2√1]=Z[x]/(x2–4x) 16 1 ±1 Not a domain
Z[(1+√17)/2] 17 1 ±(4+√17)n (norm −1n)
Z[√5] 20 2 ±(√5+2)n (norm −1n) Not maximal

See also

Notes

  1. ^ Samuel, pp. 76–77

References

  • Buell, Duncan (1989). Binary quadratic forms: classical theory and modern computations. Chapter 6.  
  •  
  • Chapter 3.1.  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.