 #jsDisabledContent { display:none; } My Account | Register | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Ekman number

Article Id: WHEBN0000476351
Reproduction Date:

 Title: Ekman number Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Ekman number

The Ekman number (Ek) is a dimensionless number used in describing geophysical phenomena in the oceans and atmosphere. It characterises the ratio of viscous forces in a fluid to the fictitious forces arising from planetary rotation. It is named after the Swedish oceanographer Vagn Walfrid Ekman.

More generally, in any rotating flow, the Ekman number is the ratio of viscous forces to Coriolis forces. When the Ekman number is small, disturbances are able to propagate before decaying owing to frictional effects. The Ekman number describes the order of magnitude for the thickness of an Ekman layer, a boundary layer in which viscous diffusion is balanced by Coriolis effects, rather than the usual convective inertia.

## Definitions

It is defined as:

\mathrm{Ek}=\frac{\nu}{2D^2\Omega\sin\varphi}

- where D is a characteristic (usually vertical) length scale of a phenomenon; ν, the kinematic eddy viscosity; Ω, the angular velocity of planetary rotation; and φ, the latitude. The term 2 Ω sin φ is the Coriolis frequency. It is given in terms of the kinematic viscosity, ν; the angular velocity, Ω; and a characteristic length scale, L.

There do appear to be some differing conventions in the literature.

Tritton gives:

\mathrm{Ek} = \frac{\nu}{\Omega L^2}.

In contrast, the NRL Plasma Formulary gives:

\mathrm{Ek} = \sqrt{\frac{\nu}{2\Omega L^2}} = \sqrt{\frac{\mathrm{Ro}}{\mathrm{Re}}}.

where Ro is the Rossby number and Re is the Reynolds number.