|
Selection of astronomical objects
|
An astronomical object or celestial object is a naturally occurring physical entity, association, or structure that current science has demonstrated to exist in the observable universe.[1] The term astronomical object is sometimes used interchangeably with astronomical body. Typically, an astronomical (celestial) body refers to a single, cohesive structure that is bound together by gravity (and sometimes by electromagnetism). Examples include the asteroids, moons, planets and the stars. Astronomical objects are gravitationally bound structures that are associated with a position in space, but may consist of multiple independent astronomical bodies or objects. These objects range from single planets to star clusters, nebulae or entire galaxies. A comet may be described as a body, in reference to the frozen nucleus of ice and dust, or as an object, when describing the nucleus with its diffuse coma and tail.
The universe can be viewed as having a hierarchical structure.[2] At the largest scales, the fundamental component of assembly is the groups and clusters, often within larger superclusters, that are strung along great filaments between nearly empty voids, forming a web that spans the observable universe.[3] Galaxies and dwarf galaxies have a variety of morphologies, with the shapes determined by their formation and evolutionary histories, including interaction with other galaxies.[4] Depending on the category, a galaxy may have one or more distinct features, such as spiral arms, a halo and a nucleus. At the core, most galaxies have a supermassive black hole, which may result in an active galactic nucleus. Galaxies can also have satellites in the form of dwarf galaxies and globular clusters.
The constituents of a galaxy are formed out of gaseous matter that assembles through gravitational self-attraction in a hierarchical manner. At this level, the resulting fundamental components are the stars, which are typically assembled in clusters from the various condensing nebulae.[5] The great variety of stellar forms are determined almost entirely by the mass, composition and evolutionary state of these stars. Stars may be found in multi-star systems that orbit about each other in a hierarchical organization. A planetary system and various minor objects such as asteroids, comets and debris, can form in a hierarchical process of accretion from the protoplanetary disks that surrounds newly formed stars.
The various distinctive types of stars are shown by the Hertzsprung–Russell diagram (H–R diagram)—a plot of absolute stellar luminosity versus surface temperature. Each star follows an evolutionary track across this diagram. If this track takes the star through a region containing an intrinsic variable type, then its physical properties can cause it to become a variable star. An example of this is the instability strip, a region of the H-R diagram that includes Delta Scuti, RR Lyrae and Cepheid variables.[6] Depending on the initial mass of the star and the presence or absence of a companion, a star may spend the last part of its life as a compact object; either a white dwarf, neutron star, or black hole.
Contents
-
Categories by location 1
-
See also 2
-
References 3
-
External links 4
Categories by location
The table below lists the general categories of objects by their location or structure.
Solar bodies
|
Extrasolar
|
Simple bodies
|
Compound objects
|
Extended objects
|
Planets
Dwarf planets
Minor planets
|
Stars (see sections below)
-
O (blue)
-
B (blue-white)
-
A (white)
-
F (yellow-white)
-
G (yellow)
-
K (orange)
-
M (red)
|
Systems
-
By observation
-
Close binaries
-
X-ray
Stellar groupings
Galaxies
|
Discs and media
-
Interplanetary
-
Stellar disc
-
Interstellar
-
Intergalactic
|
See also
References
-
^ Task Group on Astronomical Designations from IAU Commission 5 (April 2008). "Naming Astronomical Objects". International Astronomical Union (IAU). Archived from the original on 2 August 2010. Retrieved 4 July 2010.
-
^ Narlikar, Jayant V. (1996). Elements of Cosmology. Universities Press.
-
^ Smolin, Lee (1998). The life of the cosmos. Oxford University Press US. p. 35.
-
^ Buta, Ronald James; Corwin, Harold G.; Odewahn, Stephen C. (2007). The de Vaucouleurs atlas of galaxies. Cambridge University Press. p. 301.
-
^ Elmegreen, Bruce G. (January 2010). "The nature and nurture of star clusters". Star clusters: basic galactic building blocks throughout time and space, Proceedings of the International Astronomical Union, IAU Symposium 266. pp. 3–13.
-
^ Hansen, Carl J.; Kawaler, Steven D.; Trimble, Virginia (2004). Stellar interiors: physical principles, structure, and evolution. Astronomy and astrophysics library (2nd ed.). Springer. p. 86.
External links
Media related to at Wikimedia Commons
-
SkyandTelescope.com SkyChart
-
Monthly skymaps for every location on Earth
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.