The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations. It is named after the French physicist JeanBaptiste Biot (1774–1862), and gives a simple index of the ratio of the heat transfer resistances inside of and at the surface of a body. This ratio determines whether or not the temperatures inside a body will vary significantly in space, while the body heats or cools over time, from a thermal gradient applied to its surface.
In general, problems involving small Biot numbers (much smaller than 1) are thermally simple, due to uniform temperature fields inside the body. Biot numbers much larger than 1 signal more difficult problems due to nonuniformity of temperature fields within the object. It should not be confused with Nusselt number, which employs the thermal conductivity of the fluid and hence is a comparative measure of conduction and convection, both in the fluid.
The Biot number has a variety of applications, including transient heat transfer and use in extended surface heat transfer calculations.
Contents

Definition 1

Applications 2

Mass transfer analogue 3

See also 4

References 5
Definition
The Biot number is defined as:

\mathrm{Bi} = \frac{h L_C}{\ k_b}
where:
The physical significance of Biot number can be understood by imagining the heat flow from a small hot metal sphere suddenly immersed in a pool, to the surrounding fluid. The heat flow experiences two resistances: the first within the solid metal (which is influenced by both the size and composition of the sphere), and the second at the surface of the sphere. If the thermal resistance of the fluid/sphere interface exceeds that thermal resistance offered by the interior of the metal sphere, the Biot number will be less than one. For systems where it is much less than one, the interior of the sphere may be presumed always to have the same temperature, although this temperature may be changing, as heat passes into the sphere from the surface. The equation to describe this change in (relatively uniform) temperature inside the object, is simple exponential one described in Newton's law of cooling.
In contrast, the metal sphere may be large, causing the characteristic length to increase to the point that the Biot number is larger than one. Now, thermal gradients within the sphere become important, even though the sphere material is a good conductor. Equivalently, if the sphere is made of a thermally insulating (poorly conductive) material, such as wood or styrofoam, the interior resistance to heat flow will exceed that of the fluid/sphere boundary, even with a much smaller sphere. In this case, again, the Biot number will be greater than one.
Applications
Values of the Biot number smaller than 0.1 imply that the heat conduction inside the body is much faster than the heat convection away from its surface, and temperature gradients are negligible inside of it. This can indicate the applicability (or inapplicability) of certain methods of solving transient heat transfer problems. For example, a Biot number less than 0.1 typically indicates less than 5% error will be present when assuming a lumpedcapacitance model of transient heat transfer (also called lumped system analysis).^{[1]} Typically this type of analysis leads to simple exponential heating or cooling behavior ("Newtonian" cooling or heating) since the amount of thermal energy (loosely, amount of "heat") in the body is directly proportional to its temperature, which in turn determines the rate of heat transfer into or out of it. This leads to a simple firstorder differential equation which describes heat transfer in these systems.
Having a Biot number smaller than 0.1 labels a substance as "thermally thin," and temperature can be assumed to be constant throughout the material's volume. The opposite is also true: A Biot number greater than 0.1 (a "thermally thick" substance) indicates that one cannot make this assumption, and more complicated heat transfer equations for "transient heat conduction" will be required to describe the timevarying and nonspatiallyuniform temperature field within the material body. Analytic methods for handling these problems, which may exist for simple geometric shapes and uniform material thermal conductivity, are described in the article on the heat equation. Examples of verified analytic solutions along with precise numerical values are available ^{[2]} .^{[3]} Often such problems are too difficult to be done except numerically, with the use of a computer model of heat transfer.
Together with the Fourier number, the Biot number can be used in transient conduction problems in a lumped parameter solution, which can be written as,

{T  T_\infty \over T_0  T_\infty} = e^{\mathrm{BiFo}}
Mass transfer analogue
An analogous version of the Biot number (usually called the "mass transfer Biot number", or \mathrm{Bi}_m) is also used in mass diffusion processes:

\mathrm{Bi}_m=\frac{h_m L_{C}}{D_{AB}}
where:
See also
References

^ Incropera, Frank P.; David P. DeWitt; Theodore L. Bergman; Adrienne S. Lavine (2007). Fundamentals of Heat and Mass Transfer (6th ed.). John Wiley & Sons. pp. 260–261.

^ "EXACT". Exact Analytical Conduction Toolbox. University of Nebraska. January 2013. Retrieved 24 January 2015.

^ Cole, Kevin D.; et al. (April 2014). "Intrinsic Verification and a Heat Conduction Database". Int. J. Thermal Science 78: 36.
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.