World Library  
Flag as Inappropriate
Email this Article

Boerdijk–Coxeter helix

Article Id: WHEBN0019172682
Reproduction Date:

Title: Boerdijk–Coxeter helix  
Author: World Heritage Encyclopedia
Language: English
Subject: Tetrahedron, Helix, Harold Scott MacDonald Coxeter, 600-cell, List of polygons, polyhedra and polytopes, Hopf fibration, 16-cell, Grand antiprism, Apeirogon
Publisher: World Heritage Encyclopedia

Boerdijk–Coxeter helix

The Boerdijk–Coxeter helix, named after H. S. M. Coxeter and A. H. Boerdijk, is a linear stacking of regular tetrahedra, arranged so that the edges of the complex that belong to a single tetrahedron form three intertwined helices. There are two chiral forms, with either clockwise or counterclockwise windings. Contrary to any other stacking of Platonic solids, the Boerdijk–Coxeter helix is not rotationally repetitive. Even in an infinite string of stacked tetrahedra, no two tetrahedra will have the same orientation. This is because the helical pitch per cell is not a rational fraction of the circle.

Buckminster Fuller named it a tetrahelix and considered them with regular and irregular tetrahedral elements.[1]


See the Art Tower Mito.

Higher dimensional geometry

The 600-cell partitions into 20 rings of 30 tetrahedra, each a Boerdijk–Coxeter helix. When superimposed onto the 3-sphere curvature it becomes periodic, with a period of ten vertices, encompassing all 30 cells. The collective of such helices in the 600-cell represent a discrete Hopf fibration. While in 3 dimensions the edges are helices, in the imposed 3-sphere topology they are geodesics and have no torsion. They spiral around each other naturally due to the Hopf fibration.

See also



  • H.S.M. Coxeter, Regular Complex Polytopes, Cambridge University, 1974.
  • A.H. Boerdijk, Philips Res. Rep. 7 (1952) 30
  • The c-brass structure and the Boerdijk–Coxeter helix, E.A. Lord, S. Ranganathan, 2004, pp. 123–125 [1]
  • Eric A. Lord, Alan Lindsay Mackay, Srinivasa Ranganathan, New geometries for new materials, p 64, sec 4.5 The Boerdijk–Coxeter helix
  • J.F. Sadoc and N. Rivier, Boerdijk-Coxeter helix and biological helices The European Physical Journal B - Condensed Matter and Complex Systems, Volume 12, Number 2, 309-318, [2]


  • Chapter 5: Joining polyhedra, 5.36 Tetrahelix p. 53

External links

  • Boerdijk-Coxeter helix animation

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.