 My Account |   | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Dirichlet's test

Article Id: WHEBN0003141677
Reproduction Date:

 Title: Dirichlet's test Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Dirichlet's test

In mathematics, Dirichlet's test is a method of testing for the convergence of a series. It is named after its author Peter Gustav Lejeune Dirichlet, and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

## Statement

The test states that if \{a_n\} is a sequence of real numbers and \{b_n\} a sequence of complex numbers satisfying

• a_n \geq a_{n+1}
• \lim_{n \rightarrow \infty}a_n = 0
• \left|\sum^{N}_{n=1}b_n\right|\leq M for every positive integer N

where M is some constant, then the series

\sum^{\infty}_{n=1}a_n b_n

converges.

## Proof

Let S_n = \sum_{k=0}^n a_k b_k and B_n = \sum_{k=0}^n b_k.

From summation by parts, we have that S_n = a_{n + 1} B_{n} + \sum_{k=0}^n B_k (a_k - a_{k+1}).

Since B_n is bounded by M and a_n \rightarrow 0, the first of these terms approaches zero, a_{n + 1}B_{n} \to 0 as n→∞.

On the other hand, since the sequence a_n is decreasing, a_k - a_{k+1} is positive for all k, so |B_k (a_k - a_{k+1})| \leq M(a_k - a_{k+1}). That is, the magnitude of the partial sum of Bn, times a factor, is less than the upper bound of the partial sum Bn (a value M) times that same factor.

But \sum_{k=0}^n M(a_k - a_{k+1}) = M\sum_{k=0}^n (a_k - a_{k+1}), which is a telescoping series that equals M(a_0 - a_{n+1}) and therefore approaches Ma_0 as n→∞. Thus, \sum_{k=0}^\infty M(a_k - a_{k+1}) converges.

In turn, \sum_{k=0}^\infty |B_k(a_k - a_{k+1})| converges as well by the Direct Comparison test. The series \sum_{k=0}^\infty B_k(a_k - a_{k+1}) converges, as well, by the Absolute convergence test. Hence S_n converges.

## Applications

A particular case of Dirichlet's test is the more commonly used alternating series test for the case

b_n = (-1)^n \Rightarrow\left|\sum_{n=1}^N b_n\right| \leq 1.

Another corollary is that \sum_{n=1}^\infty a_n \sin n converges whenever \{a_n\} is a decreasing sequence that tends to zero.

## Improper integrals

An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals, and g is a monotonically decreasing non-negative function, then the integral of fg is a convergent improper integral.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.