World Library  
Flag as Inappropriate
Email this Article

Giant tube worm

Article Id: WHEBN0000550334
Reproduction Date:

Title: Giant tube worm  
Author: World Heritage Encyclopedia
Language: English
Subject: Deep sea communities, Marine worm, Hadal zone, Salinella, Acoelomorpha
Collection: Animals Described in 1981, Monotypic Animal Genera, Sabellida
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Giant tube worm

Giant tube worms
Scientific classification
Kingdom: Animalia
Phylum: Annelida
Class: Polychaeta
Order: Canalipalpata
Family: Siboglinidae
Genus: Riftia
Species: R. pachyptila
Binomial name
Riftia pachyptila
M. L. Jones, 1981

Giant tube worms, Riftia pachyptila, are marine invertebrates in the phylum Annelida[1] (formerly grouped in phylum Pogonophora and Vestimentifera) related to tube worms commonly found in the intertidal and pelagic zones. Riftia pachyptila live over a mile deep, and up to several miles deep, on the floor of the Pacific Ocean near black smokers, and can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 2.4 m (7 ft 10 in) and their tubular bodies have a diameter of 4 cm (1.6 in). Ambient temperature in their natural environment ranges from 2 to 30 degrees Celsius.[2]

The common name "giant tube worm" is however also applied to the largest living species of shipworm, Kuphus polythalamia, which despite the name "worm" is a bivalve mollusc, rather than an annelid.

Contents

  • Development 1
  • Body structure 2
  • Energy and nutrient source 3
  • Reproduction 4
  • Growth rate and age 5
  • See also 6
  • References 7
  • External links 8

Development

Riftia develop from a free-swimming, pelagic, non-symbiotic trochophore larva, which enters juvenile (metatrochophore) development, becoming sessile and subsequently acquiring symbiotic bacteria.[3][4] The symbiotic bacteria, on which adult worms depend for sustenance, are not present in the gametes, but are acquired from the environment via the digestive tract. The digestive tract transiently connects from a mouth at the tip of the ventral medial process to a foregut, midgut, hindgut and anus. After symbionts are established in the midgut, it undergoes substantial remodelling and enlargement to become the trophosome, while the remainder of the digestive tract has not been detected in adult specimens.[5]

Body structure

Hydrothermal vent tubeworms get organic compounds from bacteria that live in their trophosome.

They have a highly vascularized, red "plume" at the tip of their free end which is an organ for exchanging compounds with the environment (e.g., chemosynthesis, was recognized within the trophosome by Colleen Cavanaugh.[6]

The bright red color of the plume structures results from several extraordinarily complex hemoglobins, which contain up to 144 globin chains (each presumably including associated heme structures). These tube worm hemoglobins are remarkable for carrying oxygen in the presence of sulfide, without being inhibited by this molecule as hemoglobins in most other species are.[7][8]

Nitrate and nitrite are toxic, but nitrogen is required for biosynthetic processes. The chemosynthetic bacteria within the trophosome convert this nitrate to ammonium ions, which then are available for production of amino acids in the bacteria, which are in turn released to the tube worm. To transport nitrate to the bacteria, R. pachyptila concentrate nitrate in their blood, to a concentration 100 times more concentrated than the surrounding water. The exact mechanism of R. pachyptila’s ability to withstand and concentrate nitrate is still unknown.[9]

Energy and nutrient source

With sunlight not available directly as a form of energy, the tubeworms rely on bacteria in their habitat to oxidize hydrogen sulfide,[10] using dissolved oxygen in the water as electron acceptor. This reaction provides the energy needed for chemosynthesis. For this reason, tube worms are partially dependent on sunlight as an energy source, since they use free oxygen, which has been liberated by photosynthesis in water layers far above, to obtain nutrients. In this way tubeworms are similar to many forms of life which live in the ocean below depths that sunlight can penetrate. However, tubeworms are unique in being able to use bacteria to indirectly obtain all materials they need for growth from molecules dissolved in water. Tube worm growth resembles that of hydroponically grown fungi more than it does that of typical animals which need to "eat".

Reproduction

To reproduce, Riftia pachyptila females release lipid-rich eggs into the surrounding water so they start to float upwards. The males then unleash sperm bundles that swim to meet the eggs. After the eggs have hatched, the larvae swim down to attach themselves to the rock.

Growth rate and age

Riftia pachyptila has the fastest growth rate of any known marine invertebrate. These organisms have been known to colonize a new site, grow to sexual maturity and increase in length to 4.9 feet (1.5 m) in less than two years.[11] This is in sharp contrast to Lamellibrachia luymesi, the tube worms that live at deep sea cold seeps and grow very slowly for most of their lives. It takes from 170 to 250 years for Lamellibrachia luymesi to grow 2 meters in length, and even longer worms have been discovered.[12]

See also

References

  1. ^
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^ C.Michael Hogan. 2011. . Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DCSulfur
  11. ^
  12. ^

External links

  • Giant Tube Worm page at the Smithsonian
  • Podcast on Giant Tube Worm at the Encyclopedia of Life
  • http://www.seasky.org/monsters/sea7a1g.html
  • http://www.ucmp.berkeley.edu/annelida/pogonophora.html
  • http://www.ocean.udel.edu/deepsea/level-2/creature/tube.html
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.