World Library  
Flag as Inappropriate
Email this Article

Interval ratio

Article Id: WHEBN0027510655
Reproduction Date:

Title: Interval ratio  
Author: World Heritage Encyclopedia
Language: English
Subject: 7-limit tuning, Interval (music), Perfect fifth, Equal temperament, Ragisma
Publisher: World Heritage Encyclopedia

Interval ratio

3-limit 9:8 Play  .
5-limit 10:9 minor tone About this sound   .
7-limit 8:7 septimal whole tone About this sound   .
11-limit 11:10 greater undecimal neutral second About this sound   .

In music, an interval ratio is a ratio of the frequencies of the pitches in a musical interval. For example, a just perfect fifth (for example C to G) is 3:2 (About this sound   ), 1.5, and may be approximated by an equal tempered perfect fifth (About this sound   ) which is 27/12 (about 1.498). If the A above middle C is 440 Hz, the perfect fifth above it would thus be an E at (440*1.5=) 660 Hz while the equal tempered E5 is 659.255 Hz.

Ratios, rather than direct frequency measurements, allow musicians to work with relative pitch measurements applicable to many instruments in an intuitive manner, whereas one rarely has the frequencies of fixed pitched instruments memorized and rarely has the capabilities to measure the changes of adjustable pitch instruments (electronic tuner). Ratios have an inverse relationship to string length, for example stopping a string at two-thirds (2:3) its length produces a pitch one and one-half (3:2) that of the open string (not to be confused with Inversion (music)).

Intervals may be ranked by relative    ), etc.

Consonance and dissonance may more subtly be defined by limit, wherein the ratios whose limit, which includes its integer multiples, is lower are generally more consonant. For example, the 3-limit 128:81 (About this sound   ) and the 7-limit 14:9 (About this sound   ). Despite having larger integers 128:81 is less dissonant than 14:9, as according to limit theory.

For ease of comparison intervals may also be measured in cents, a logarithmic measurement. For example, the just perfect fifth is 701.955 cents while the equal tempered perfect fifth is 700 cents.


Frequency ratios are used to describe intervals in both Western and non-Western music. They are most often used to describe intervals between notes tuned with tuning systems such as Pythagorean tuning, just intonation, and meantone temperament, the size of which can be expressed by small-integer ratios.

When a musical instrument is tuned using a just intonation tuning system, the size of the main intervals can be expressed by small-integer ratios, such as 1:1 (unison), 2:1 (octave), 3:2 (perfect fifth), 4:3 (perfect fourth), 5:4 (major third). Intervals with small-integer ratios are often called just intervals, or pure intervals. To most people, just intervals sound consonant, i.e. pleasant and well-tuned.

Most commonly, however, musical instruments are nowadays tuned using a different tuning system, called 12-tone equal temperament, in which the main intervals are typically perceived as consonant, but none is justly tuned and as consonant as a just interval, except for the unison and octave. Although the size of equally tuned intervals is typically similar to that of just intervals, in most cases it cannot be expressed by small-integer ratios. For instance, an equal tempered perfect fifth has a frequency ratio of about 1.4983:1 (or 14983:10000). For a comparison between the size of intervals in different tuning systems, see section Size in different tuning systems.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.