World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0002346537
Reproduction Date:

Title: Jackscrew  
Author: World Heritage Encyclopedia
Language: English
Subject: Leadscrew, Screw (simple machine), Square thread form, Gate operator, Jack (device)
Collection: Actuators, Mechanisms (Engineering)
Publisher: World Heritage Encyclopedia


A 2.5-ton screw jack. The jack is operated by inserting the bar (visible lower left) in the holes at the top and turning.

A jackscrew is a type of jack that is operated by turning a leadscrew. In the form of a screw jack it is commonly used to lift moderately heavy weights, such as vehicles. More commonly it is used as an adjustable support for heavy loads, such as the foundations of houses, or large vehicles. These can support a heavy load, but not lift it.

A jackscrew operates this automotive scissor jack.
Antique locomotive screw jack
Antique wooden jackscrew for repair of cart and wagon wheels (Ethnographic Museum of Elhovo, Bulgaria)


  • Advantages 1
  • Mechanical advantage 2
    • Limitations 2.1
  • Applications 3
  • In electronic connectors 4
  • See also 5
  • References 6


An advantage of jackscrews over some other types of jack is that they are self-locking, which means when the rotational force on the screw is removed, it will remain motionless where it was left and will not rotate backwards, regardless of how much load it is supporting. This makes them inherently safer than hydraulic jacks, for example, which will move backwards under load if the force on the hydraulic actuator is accidentally released.

Mechanical advantage

The mechanical advantage of a screw jack, the ratio of the force the jack exerts on the load to the input force on the lever, ignoring friction. This derives from two factors, the simple lever advantage of a long operating handle and also the advantage of the inclined plane of the leadscrew. Overall it is

\frac {F_\text{load}}{F_\text{in}} = \frac {2 \pi r}{l} \,


F_\text{load} \, is the force the jack exerts on the load
F_\text{in} \, is the rotational force exerted on the handle of the jack
r \, is the length of the jack handle, from the screw axis to where the force is applied
l \, is the lead of the screw.

However, most screw jacks have large amounts of friction which increase the input force necessary, so the actual mechanical advantage is often only 30% to 50% of this figure.


Screw jacks are limited in their lifting capacity. Increasing load increases friction within the screw threads. A fine pitch thread, which would increase the advantage of the screw, also reduces the size and strength of the threads. Longer operating levers soon reach a point where the lever will simply bend at their inner end.

Screw jacks have now largely been replaced by hydraulic jacks. This was encouraged in 1858 when jacks by the Tangye company to Bramah's hydraulic press concept were applied to the successful launching of Brunel's SS Great Britain, after two failed attempts by other means. The maximum mechanical advantage possible for a hydraulic jack is not limited by the limitations on screw jacks and can be far greater. After WWII, improvements to the grinding of hydraulic rams and the use of O ring seals reduced the price of low-cost hydraulic jacks and they became widespread for use with domestic cars. Screw jacks still remain for minimal cost applications, such as the little-used tyre-changing jacks supplied with cars.


A jackscrew's threads must support heavy loads. In the most heavy-duty applications, such as screw jacks, a square thread or buttress thread is used, because it has the lowest friction. In other application such as actuators, an Acme thread is used, although it has higher friction.

The large area of sliding contact between the screw threads means jackscrews have high friction and low efficiency as power transmission linkages, around 30%–50%. So they are not often used for continuous transmission of high power, but more often in intermittent positioning applications.

The ball screw is a more advanced type of leadscrew that uses a recirculating-ball nut to minimize friction and prolong the life of the screw threads. The thread profile of such screws is approximately semicircular (commonly a "gothic arch" profile) to properly mate with the bearing balls. The disadvantage to this type of screw is that it is not self-locking. Ball screws are prevalent in powered leadscrew actuators.

Jackscrews form vital components in equipment. For instance, the failure of a jackscrew on a McDonnell Douglas MD80 airliner due to a lack of grease resulted in the crash of Alaska Airlines Flight 261 off the coast of California in 2000.

The jackscrew figured prominently in the classic novel Robinson Crusoe. It was also featured in a recent History Channel program as the saving tool of the Pilgrims' voyage – the main crossbeam, a key structural component of their small ship, cracked during a severe storm. A farmer's jackscrew secured the damage until landfall.

In electronic connectors

The term jackscrew is also used for the captive screws that draw the two parts of D-subminiature electrical connectors together and hold them mated. When unscrewed, they allow the connector halves to be taken apart. These small jackscrews may have ordinary screw heads or extended heads (also making them thumbscrews) that allow the user's fingers to turn the jackscrew. Furthermore, the head sometimes has an internal female thread, with the male externally threaded screw shaft extending from that. The threaded-head type can be used to panel-mount one connector and provide a means to attach the mating connector to the first connector.

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.