This article itemizes the various lists of mathematics topics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing.
The purpose of this list is not similar to that of the Mathematics Subject Classification formulated by the American Mathematical Society. Many mathematics journals ask authors of research papers and expository articles to list subject codes from the Mathematics Subject Classification in their papers. The subject codes so listed are used by the two major reviewing databases, Mathematical Reviews and Zentralblatt MATH. This list has some items that would not fit in such a classification, such as list of exponential topics and list of factorial and binomial topics, which may surprise the reader with the diversity of their coverage.
Contents

Areas of basic mathematics 1

Areas of advanced mathematics 2

Pure mathematics 2.1

Algebra 2.1.1

Calculus and analysis 2.1.2

Geometry and topology 2.1.3

Combinatorics 2.1.4

Logic 2.1.5

Number theory 2.1.6

Applied mathematics 2.2

Dynamical systems and differential equations 2.2.1

Mathematical physics 2.2.2

Computing 2.2.3

Information theory and signal processing 2.2.4

Probability and statistics 2.2.5

Game theory 2.2.6

Operations research 2.2.7

Methodology 3

Mathematical statements 4

General concepts 5

Mathematical objects 6

Equations named after people 7

About mathematics 8

Mathematicians 8.1

Work of particular mathematicians 8.2

Reference tables 9

Journals 10

Metalists 11

Others 12

Notes 13

External links and references 14
Areas of basic mathematics
These lists include topics typically taught in secondary education or in the first year of university.
Areas of advanced mathematics
See also Areas of mathematics.
As a rough guide this list is divided into pure and applied sections although in reality these branches are overlapping and intertwined.
Pure mathematics
Algebra
Algebra includes the study of algebraic structures, which are sets and operations defined on these sets satisfying certain axioms. The field of algebra is further divided according to which structure is studied; for instance, group theory concerns an algebraic structure called group.
Calculus and analysis
Calculus studies the computation of limits, derivatives, and integrals of functions of real numbers, and in particular studies instantaneous rates of change. Analysis studies the same subjects, but on a more rigorous level, and also topics that evolved from calculus.
Geometry and topology
Ford circles—A circle rests upon each fraction in lowest terms. Each touches its neighbors without crossing.
Geometry is initially the study of spatial figures like circles and cubes, though it has been generalized considerably. Topology developed from geometry; it looks at those properties that do not change even when the figures are deformed by stretching and bending, like dimension.
Combinatorics
Combinatorics concerns the study of discrete (and usually finite) objects. Aspects include "counting" the objects satisfying certain criteria (enumerative combinatorics), deciding when the criteria can be met, and constructing and analyzing objects meeting the criteria (as in combinatorial designs and matroid theory), finding "largest", "smallest", or "optimal" objects (extremal combinatorics and combinatorial optimization), and finding algebraic structures these objects may have (algebraic combinatorics).
Logic
Venn diagrams are illustrations of set theoretical, mathematical or logical relationships.
Logic is the foundation which underlies mathematical logic and the rest of mathematics. It tries to formalize valid reasoning. In particular, it attempts to define what constitutes a proof.
Number theory
Number theory studies the natural, or whole, numbers. One of the central concepts in number theory is that of the prime number, and there are many questions about primes that appear simple but whose resolution continues to elude mathematicians.
Applied mathematics
Dynamical systems and differential equations
A differential equation is an equation involving an unknown function and its derivatives.
In a dynamical system, a fixed rule describes the time dependence of a point in a geometrical space. The mathematical models used to describe the swinging of a clock pendulum, the flow of water in a pipe, or the number of fish each spring in a lake are examples of dynamical systems.
Mathematical physics
Mathematical physics is concerned with "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories".
Computing
The fields of mathematics and computing intersect both in computer science, the study of algorithms and data structures, and in scientific computing, the study of algorithmic methods for solving problems in mathematics, science and engineering.
Information theory and signal processing
Information theory is a branch of applied mathematics and electrical engineering involving the quantification of information. Historically, information theory was developed to find fundamental limits on compressing and reliably communicating data.
Signal processing is the analysis, interpretation, and manipulation of signals. Signals of interest include sound, images, biological signals such as ECG, radar signals, and many others. Processing of such signals includes filtering, storage and reconstruction, separation of information from noise, compression, and feature extraction.
Probability and statistics
Probability theory is the formalization and study of the mathematics of uncertain events or knowledge. The related field of mathematical statistics develops statistical theory with mathematics. Statistics, the science concerned with collecting and analyzing data, is an autonomous discipline (and not a subdiscipline of applied mathematics).
Game theory
Game theory is a branch of mathematics that uses models to study interactions with formalized incentive structures ("games"). It has applications in a variety of fields, including economics, evolutionary biology, political science, social psychology and military strategy.
Operations research
Operations research is the study and use of mathematical models, statistics and algorithms to aid in decisionmaking, typically with the goal of improving or optimizing performance of realworld systems.
Methodology
Mathematical statements
A mathematical statement amounts to a proposition or assertion of some mathematical fact, formula, or construction. Such statements include axioms and the theorems that may be proved from them, conjectures that may be unproven or even unprovable, and also algorithms for computing the answers to questions that can be expressed mathematically.
General concepts
Mathematical objects
Among mathematical objects are numbers, functions, sets, a great variety of things called "spaces" of one kind or another, algebraic structures such as rings, groups, or fields, and many other things.
Equations named after people
About mathematics
Mathematicians
Mathematicians study and research in all the different areas of mathematics. The publication of new discoveries in mathematics continues at an immense rate in hundreds of scientific journals, many of them devoted to mathematics and many devoted to subjects to which mathematics is applied (such as theoretical computer science and theoretical physics).
Work of particular mathematicians
Reference tables
Integrals
In calculus, the integral of a function is a generalization of area, mass, volume, sum, and total. The following pages list the integrals of many different functions.
Journals
Metalists
Others
Notes

^Note 1 : Definition from the Journal of Mathematical Physics [1].
External links and references

2000 Mathematics Subject Classification from the American Mathematical Society, a scheme authors find many mathematics research journals asking them to use to classify their submissions; those published then include these classifications.

The Mathematical Atlas
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.