World Library  
Flag as Inappropriate
Email this Article

Magellanic Stream

Article Id: WHEBN0003459458
Reproduction Date:

Title: Magellanic Stream  
Author: World Heritage Encyclopedia
Language: English
Subject: Milky Way, Small Magellanic Cloud, Large Magellanic Cloud, Magellanic Clouds, Mensa (constellation)
Publisher: World Heritage Encyclopedia

Magellanic Stream

Magellanic Stream
Type Intergalactic high-velocity cloud
Observation data
(Epoch J2000.0)
00h 32m
Declination −30.0°

The Magellanic Stream is a stream of high-velocity clouds of gas extending from the Large and Small Magellanic Clouds over 100° through the Galactic south pole of the Milky Way. The stream was sighted in 1965 and its relation to the Magellanic Clouds was established in 1974.


  • Discovery and early observations 1
  • Models 2
  • See also 3
  • References 4
  • External links 5

Discovery and early observations

Map of Hubble observations overlaid on LAB survey, tracing the origin of the Magellanic Stream.[1]

In 1965, anomalous velocity gas clouds were found in the region of the Magellanic Clouds. The gas stretches for at least 180 degrees across the sky. This corresponds to 180 kpc (600,000 ly) at an approximate distance of 55 kpc (180,000 ly). The gas is very collimated and polar with respect to the Milky Way. The velocity range is huge (from −400 to 400 km s−1 in reference to Local Standard of Rest) and velocity patterns do not follow the rest of the Milky Way. Hence, it was determined to be a classic high-velocity cloud.

However, the gas was not mapped, and the connection to the two Magellanic Clouds was not made. The Magellanic Stream as such was discovered as a Neutral Hydrogen (HI) gas feature near the Magellanic Clouds by Wannier & Wrixon in 1972. Its connection to the Magellanic Clouds was made by Mathewson et al. in 1974.

Owing to the closeness of the Magellanic Clouds and the ability to resolve individual stars and their parallaxes, and proper motion, subsequent observations gave the full 6-dimensional phase space information of both clouds (with very large relative errors for the transverse velocities). This enabled the calculation of the likely past orbit of the Large and the Small Magellanic Cloud in relation to the Milky Way. The calculation necessitated large assumptions, for example, on the shapes and masses of the 3 galaxies, and the nature of dynamical friction between the moving objects. Observations of individual stars revealed details of star formation history.


Models describing the formation of the Magellanic Stream had been produced since 1980. Following computing power, the initial models were very simple, non-self-gravitating, and with few particles. Most models predicted a feature leading the Magellanic Clouds. These early models were 'tidal' models. Just like tides on Earth are induced by the gravity of the 'leading' Moon, the models predicted two directions opposite each other, in which particles are preferentially pulled. However, the predicted features were not observed. This led to a few models that did not require a leading element but which had problems of their own. In 1998 a study analysing the full sky survey made by the HIPASS team at Parkes Observatory generated important new observational data. Putman et al. discovered that a mass of high-velocity clouds leading the Magellanic Clouds was actually fully connected to the Magellanic Clouds. So, the Leading Arm Feature had its existence finally established. Furthermore, Lu et al. (1998) and Gibson et al. (2000) established the chemical similarity between the streams and Magellanic Clouds.

Newer, increasingly sophisticated models all tested the Leading Arm Feature hypothesis. These models make heavy use of gravity effects through tidal fields. Some models also rely on ram pressure stripping as a shaping mechanism. Most recent models increasingly include drag from the halo of the Milky Way as well as gas dynamics, star formation and chemical evolution. It is thought that the tidal forces mostly affect the Small Magellanic Cloud, since it has lower mass, and is less gravitationally bound. In contrast, ram pressure stripping mostly affects the Large Magellanic Cloud, because it has a larger reservoir of gas.

See also


  1. ^ "Hubble finds source of Magellanic Stream". ESA/Hubble Press Release. Retrieved 14 August 2013. 
  • SIMBAD, "Magellanic Stream" (accessed 12 April 2010)
  • Discovery: Wannier, P.; Wrixon, G. T. (1972). "An Unusual High-Velocity Hydrogen Feature". ApJ 173: L119 – L123.  
  • MC connection made: Mathewson, D. S.; Cleary, M. N.; Murray, J. D. (1974). "The Magellanic stream". ApJ 190: 291–296.  
  • Initial modelling: Murai, T.; Fujimoto, M.; Fujimoto (1980). "The Magellanic Stream and the Galaxy with a Massive Halo". PASJ 32: 581–604.  
  • LAF discovery: Putman, M. E; et al. (1998). "Tidal disruption of the Magellanic Clouds by the Milky Way". Nature 394 (6695): 752–754.  

Latest models:

  • Yoshizawa, Akira M.; Noguchi, Masafumi (2003). "The dynamical evolution and star formation history of the Small Magellanic Cloud: effects of interactions with the Galaxy and the Large Magellanic Cloud". MNRAS 339 (4): 1135–1154.  
  • Mastropietro, C.; Moore, B.; Mayer, L.; Wadsley, J.; Stadel, J. (2005). "The gravitational and hydrodynamical interaction between the Large Magellanic Cloud and the Galaxy". MNRAS 363 (2): 509–520.  
  • Connors, Tim W.; Kawata, Daisuke; Gibson, Brad K. (2005). "N-body simulations of the Magellanic Stream".  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.