World Library  
Flag as Inappropriate
Email this Article

Methyl radical

Article Id: WHEBN0000089221
Reproduction Date:

Title: Methyl radical  
Author: World Heritage Encyclopedia
Language: English
Subject: Methylene (compound), CH3, Teahouse/Questions/Archive 345, Methanol, Teahouse/Questions/Archive 344
Collection: Astrochemistry, Free Radicals, Oil Refining
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Methyl radical

Methyl radical
Names
IUPAC name
Methyl
Systematic IUPAC name
λ3-Methyl
Other names
Hydrogen carbide(-III)
Methyl radical
Identifiers
 Y
1696831
ChEBI
ChemSpider  Y
57
Jmol-3D images Image
MeSH
PubChem
Properties
CH3
Molar mass 15.04 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Methyl (also systematically named trihydridocarbon) is an chemical formula CH
3
(also written as [CH
3
]
). It is a metastable colourless gas, which is mainly produced in situ as a precursor to other hydrocarbons in the petroleum cracking industry. It can act as either a strong oxidant or a strong reductant, and is quite corrosive to metals.

Contents

  • Chemical properties 1
    • Redox behaviour 1.1
    • Structure 1.2
    • Chemical reactions 1.3
  • Production 2
    • Acetone photolysis 2.1
    • Halomethane photolysis 2.2
    • Methane oxidation 2.3
    • Azomethane pyrolysis 2.4
  • In the interstellar medium 3
  • References 4

Chemical properties

Its first ionization potential (yielding the methenium ion, CH+
3
) is 9.837±0.005 eV.[1]

Redox behaviour

The carbon centre in methyl can bond with electron-donating molecules by reacting:

CH
3
+ R· → RCH
3

Because of the capture of the nucleophile (R·), methyl has oxidising character. Methyl is a strong oxidant with organic chemicals. However, it is equally a strong reductant with chemicals such as water. It does not form aqueous solutions, as it reduces water to produce methanol and elemental hydrogen:

CH
3
+ 2 H
2
O
→ 2 CH
3
OH
+ H
2

Structure

The molecular geometry of the methyl radical is quasi-trigonal planar, although the energy cost of distortion to a pyramidal geometry is small. Substitution of hydrogen atoms by more electronegative substituents leads to radicals with a pyramidal geometry, such as the trifluoromethyl radical, CF3.[2]

Chemical reactions

Methyl undergoes the typical chemical reactions of a radical. Below approximately 1,100 °C (2,010 °F), it rapidly dimerises to form ethane. Upon treatment with an alcohol, it converts to methane and either an alkoxy or hydroxyalkyl. Reduction of methyl gives methane. When heated above, at most, 1,400 °C (2,550 °F), methyl decomposes to produce methylidyne and elemental hydrogen, or to produce methylene and atomic hydrogen:

CH
3
→ CH + H
2
CH
3
CH
2
+ H

Methyl is very corrosive to metals, forming methylated metal compounds:

M + n CH
3
→ M(CH3)n

Production

Acetone photolysis

It can be produced by the ultraviolet photodissociation of acetone vapour at 193 nm:[3]

C
3
H
6
O
→ CO + 2 CH
3

Halomethane photolysis

It is also produced by the ultraviolet dissociation of halomethanes:

CH
3
X
→ X + CH
3

Methane oxidation

It can also be produced by the reaction of methane with the hydroxyl radical:

OH + CH4 → CH3 + H2O

This process begins the major removal mechanism of methane from the atmosphere. The reaction occurs in the troposphere or stratosphere. In addition to being the largest known sink for atmospheric methane, this reaction is one of the most important sources of water vapor in the upper atmosphere.

This reaction in the troposphere gives a methane lifetime of 9.6 years. Two more minor sinks are soil sinks (160 year lifetime) and stratospheric loss by reaction with ·OH, ·Cl and ·O1D in the stratosphere (120 year lifetime), giving a net lifetime of 8.4 years.[4]

Azomethane pyrolysis

Methyl radicals can also be obtained by pyrolysis of azomethane, CH3-N=N-CH3, in a low-pressure system.

In the interstellar medium

Methyl was discovered in interstellar medium in 2000 by a team led by Helmut Feuchtgruber who detected it using the Infrared Space Observatory. It was first detected in molecular clouds toward the centre of the Milky Way.[5]

References

  1. ^ L. Golob, N. Jonathan, A. Morris, M. Okuda, K.J. Ross (1972), "The first ionization potential of the methyl radical as determined by photoelectron spectroscopy". Journal of Electron Spectroscopy and Related Phenomena, volume 1, issue 5, pages 506-508 doi:10.1016/0368-2048(72)80022-7
  2. ^ Anslyn E.V. and Dougherty D.A., Modern Physical Organic Chemistry (University Science Books, 2006), p.57
  3. ^ Hall, G. E.; Vanden Bout, D.; Sears, Trevor J. (1991). "Photodissociation of acetone at 193 nm: Rotational- and vibrational-state distributions of methyl fragments by diode laser absorption/gain spectroscopy". The Journal of Chemical Physics (AIP Publishing) 94 (6): 4182.  
  4. ^ "Trace Gases: Current Observations, Trends, and Budgets". Climate Change 2001, IPCC Third Assessment Report. IPCC/United Nations Environment Programme. 
  5. ^ "ISO detects a new molecule in interstellar space". Science & Technology. European Space Agency. Retrieved 17 June 2013. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.