Orbital inclination change is an orbital maneuver aimed at changing the inclination of an orbiting body's orbit. This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector (delta v) at the orbital nodes (i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes).
In general, inclination changes can take a very large amount of delta v to perform, and most mission planners try to avoid them whenever possible to conserve fuel. This is typically achieved by launching a spacecraft directly into the desired inclination, or as close to it as possible so as to minimize any inclination change required over the duration of the spacecraft life. Planetary flybys are the most efficient way to achieve large inclination changes, but they are only effective for interplanetary missions.
Contents

Efficiency 1

Inclination entangled with other orbital elements 2

Calculation 3

Circular orbit inclination change 4

Other ways to change inclination 5

See also 6

References 7
Efficiency
The simplest way to perform a plane change is to perform a burn around one of the two crossing points of the initial and final planes. The deltav required is the vector change in velocity between the two planes at that point.
However, maximum efficiency of inclination changes are achieved at apoapsis, (or apogee), where orbital velocity v\, is the lowest. In some cases, it can require less total delta v to raise the satellite into a higher orbit, change the orbit plane at the higher apogee, and then lower the satellite to its original altitude.^{[1]}
For the most efficient example mentioned above, targeting an inclination at apoapsis also changes the argument of periapsis. However, targeting in this manner limits the mission designer to changing the plane only along the line of apsides.
For Hohmann transfers, the initial orbit and the final orbit are 180 degrees apart. Because the transfer orbital plane has to include the central body, such as the Sun, and the initial and final nodes, this can require two 90 degree plane changes to reach and leave the transfer plane. In such cases it is often more efficient to use a broken plane maneuver where an additional burn is done so that plane change only occurs at the intersection of the initial and final orbital planes, rather than at the ends.^{[2]}
Inclination entangled with other orbital elements
An important subtlety of performing an inclination change is that Keplerian orbital inclination is defined by the angle between ecliptic North and the vector normal to the orbit plane, (i.e. the angular momentum vector). This means that inclination is always positive and is entangled with other orbital elements primarily the argument of periapsis which is in turn connected to the longitude of the ascending node. This can result in two very different orbits with precisely the same inclination.
Calculation
In a pure inclination change, only the inclination of the orbit is changed while all other orbital characteristics (radius, shape, etc.) remains the same as before. Deltav (\Delta{v_i}\,) required for an inclination change (\Delta{i}\,) can be calculated as follows:

\Delta{v_i}= {2\sin(\frac{\Delta{i}}{2})\sqrt{1e^2}\cos(w+f)na \over {(1+e\cos(f))}}
where:
For more complicated maneuvers which may involve a combination of change in inclination and orbital radius, the amount of delta v is the vector difference between the velocity vectors of the initial orbit and the desired orbit at the transfer point.
Circular orbit inclination change
Where both orbits are circular (i.e. e\, = 0) and have the same radius the Deltav (\Delta{v_i}\,) required for an inclination change (\Delta{i}\,) can be calculated using:

\Delta{v_i}= {2v\, \sin \left(\frac{\Delta{i}}{2} \right)}
Where:
Other ways to change inclination
Some other ways to change inclination that do not require burning propellant (or help reduce the amount of propellant required) include

aerodynamic lift (for bodies with an atmosphere, such as the Earth)

tethers

solar sails
Transits of other bodies such as the Moon can also be done.
None of these methods will change the deltaV required, they are simply alternate means of achieving the same end result and, ideally, will reduce propellant usage.
See also
References

^ ^{a} ^{b} Braeunig, Robert A. "Basics of Space Flight: Orbital Mechanics".

^ http://issfd.org/ISSFD_2007/31.pdf






Shape/Size



Orientation



Position



Variation











This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.