In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Partial derivatives are used in vector calculus and differential geometry.
The partial derivative of a function f(x, y, ...) with respect to the variable x is variously denoted by

f^\prime_x,\ f_x,\ \partial_x f, \frac{\partial}{\partial x}f, \text{ or } \frac{\partial f}{\partial x}.
Since in general a partial derivative is a function of the same arguments as was the original function, this functional dependence is sometimes explicitly included in the notation, as in

f_x(x, y, ...), \ \frac (x, y, ...).
The partialderivative symbol is ∂. One of the first known uses of the symbol in mathematics is by Marquis de Condorcet from 1770, who used it for partial differences. The modern partial derivative notation is by AdrienMarie Legendre (1786), though he later abandoned it; Carl Gustav Jacob Jacobi reintroduced the symbol in 1841.^{[1]}
Contents

Introduction 1

Definition 2

Basic definition 2.1

Formal definition 2.2

Examples 3

Geometry 3.1

Optimization 3.2

Science and engineering 3.3

Notation 4

Antiderivative analogue 5

Higher order partial derivatives 6

See also 7

Notes 8

External links 9
Introduction
Suppose that ƒ is a function of more than one variable. For instance,

z = f(x,y) = \,\! x^2 + xy + y^2.\,
A graph of
z = x^{2} + xy + y^{2}. For the partial derivative at
(1, 1, 3) that leaves
y constant, the corresponding
tangent line is parallel to the
xzplane.
A slice of the graph above showing the function in the xzplane at y= 1
The graph of this function defines a surface in Euclidean space. To every point on this surface, there are an infinite number of tangent lines. Partial differentiation is the act of choosing one of these lines and finding its slope. Usually, the lines of most interest are those that are parallel to the xzplane, and those that are parallel to the yzplane (which result from holding either y or x constant, respectively.)
To find the slope of the line tangent to the function at P(1, 1, 3) that is parallel to the xzplane, the y variable is treated as constant. The graph and this plane are shown on the right. On the graph below it, we see the way the function looks on the plane y = 1. By finding the derivative of the equation while assuming that y is a constant, the slope of ƒ at the point (x, y, z) is found to be:

\frac{\partial z}{\partial x} = 2x+y
So at (1, 1, 3), by substitution, the slope is 3. Therefore

\frac{\partial z}{\partial x} = 3
at the point (1, 1, 3). That is, the partial derivative of z with respect to x at (1, 1, 3) is 3.
Definition
Basic definition
The function f can be reinterpreted as a family of functions of one variable indexed by the other variables:

f(x,y) = f_y(x) = \,\! x^2 + xy + y^2.\,
In other words, every value of y defines a function, denoted f_{y}, which is a function of one variable x.^{[2]} That is,

f_y(x) = x^2 + xy + y^2.\,
Once a value of y is chosen, say a, then f(x,y) determines a function f_{a} which traces a curve x^{2} + ax + a^{2} on the xz plane:

f_a(x) = x^2 + ax + a^2. \,
In this expression, a is a constant, not a variable, so f_{a} is a function of only one real variable, that being x. Consequently, the definition of the derivative for a function of one variable applies:

f_a'(x) = 2x + a. \,
The above procedure can be performed for any choice of a. Assembling the derivatives together into a function gives a function which describes the variation of f in the x direction:

\frac{\partial f}{\partial x}(x,y) = 2x + y.\,
This is the partial derivative of f with respect to x. Here ∂ is a rounded d called the partial derivative symbol. To distinguish it from the letter d, ∂ is sometimes pronounced "del" or "partial" instead of "dee".
In general, the partial derivative of a function f(x_{1},...,x_{n}) in the direction x_{i} at the point (a_{1},...,a_{n}) is defined to be:

\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h \to 0}\frac{f(a_1,\ldots,a_i+h,\ldots,a_n)  f(a_1,\ldots, a_i, \dots,a_n)}{h}.
In the above difference quotient, all the variables except x_{i} are held fixed. That choice of fixed values determines a function of one variable f_{a_1,\ldots,a_{i1},a_{i+1},\ldots,a_n}(x_i) = f(a_1,\ldots,a_{i1},x_i,a_{i+1},\ldots,a_n), and by definition,

\frac{df_{a_1,\ldots,a_{i1},a_{i+1},\ldots,a_n}}{dx_i}(a_i) = \frac{\partial f}{\partial x_i}(a_1,\ldots,a_n).
In other words, the different choices of a index a family of onevariable functions just as in the example above. This expression also shows that the computation of partial derivatives reduces to the computation of onevariable derivatives.
An important example of a function of several variables is the case of a scalarvalued function f(x_{1},...x_{n}) on a domain in Euclidean space R^{n} (e.g., on R^{2} or R^{3}). In this case f has a partial derivative ∂f/∂x_{j} with respect to each variable x_{j}. At the point a, these partial derivatives define the vector

\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \ldots, \frac{\partial f}{\partial x_n}(a)\right).
This vector is called the gradient of f at a. If f is differentiable at every point in some domain, then the gradient is a vectorvalued function ∇f which takes the point a to the vector ∇f(a). Consequently, the gradient produces a vector field.
A common abuse of notation is to define the del operator (∇) as follows in threedimensional Euclidean space R^{3} with unit vectors \mathbf{\hat{i}}, \mathbf{\hat{j}}, \mathbf{\hat{k}}:

\nabla = \bigg \bigg] \mathbf{\hat{i}} + \bigg\bigg] \mathbf{\hat{j}} + \bigg\bigg] \mathbf{\hat{k}}
Or, more generally, for ndimensional Euclidean space R^{n} with coordinates (x_{1}, x_{2}, x_{3},...,x_{n}) and unit vectors (\mathbf{\hat{e}_1}, \mathbf{\hat{e}_2}, \mathbf{\hat{e}_3}, \dots , \mathbf{\hat{e}_n}):

\nabla = \sum_{j=1}^n \bigg\bigg] \mathbf{\hat{e}_j} = \bigg\bigg] \mathbf{\hat{e}_1} + \bigg\bigg] \mathbf{\hat{e}_2} + \bigg\bigg] \mathbf{\hat{e}_3} + \dots + \bigg\bigg] \mathbf{\hat{e}_n}
Formal definition
Like ordinary derivatives, the partial derivative is defined as a limit. Let U be an open subset of R^{n} and f : U → R a function. The partial derivative of f at the point a = (a_{1}, ..., a_{n}) ∈ U with respect to the ith variable a_{i} is defined as

\frac{ \partial }{\partial a_i }f(\mathbf{a}) = \lim_{h \rightarrow 0}{ f(a_1, \dots , a_{i1}, a_i+h, a_{i+1}, \dots ,a_n)  f(a_1, \dots, a_i, \dots ,a_n) \over h }
Even if all partial derivatives ∂f/∂a_{i}(a) exist at a given point a, the function need not be continuous there. However, if all partial derivatives exist in a neighborhood of a and are continuous there, then f is totally differentiable in that neighborhood and the total derivative is continuous. In this case, it is said that f is a C^{1} function. This can be used to generalize for vector valued functions (f : U → R'^{m}) by carefully using a componentwise argument.
The partial derivative \frac{\partial f}{\partial x} can be seen as another function defined on U and can again be partially differentiated. If all mixed second order partial derivatives are continuous at a point (or on a set), f is termed a C^{2} function at that point (or on that set); in this case, the partial derivatives can be exchanged by Clairaut's theorem:

\frac{\partial^2f}{\partial x_i\, \partial x_j} = \frac{\partial^2f} {\partial x_j\, \partial x_i}.
Examples
Geometry
The volume of a cone depends on height and radius
The volume V of a cone depends on the cone's height h and its radius r according to the formula

V(r, h) = \frac{\pi r^2 h}{3}.
The partial derivative of V with respect to r is

\frac{ \partial V}{\partial r} = \frac{ 2 \pi r h}{3},
which represents the rate with which a cone's volume changes if its radius is varied and its height is kept constant. The partial derivative with respect to h is

\frac{ \partial V}{\partial h} = \frac{\pi r^2}{3},
which represents the rate with which the volume changes if its height is varied and its radius is kept constant.
By contrast, the total derivative of V with respect to r and h are respectively

\frac{\operatorname dV}{\operatorname dr} = \overbrace{\frac{2 \pi r h}{3}}^\frac{ \partial V}{\partial r} + \overbrace{\frac{\pi r^2}{3}}^\frac{ \partial V}{\partial h}\frac{\operatorname d h}{\operatorname d r}
and

\frac{\operatorname dV}{\operatorname dh} = \overbrace{\frac{\pi r^2}{3}}^\frac{ \partial V}{\partial h} + \overbrace{\frac{2 \pi r h}{3}}^\frac{ \partial V}{\partial r}\frac{\operatorname d r}{\operatorname d h}
The difference between the total and partial derivative is the elimination of indirect dependencies between variables in partial derivatives.
If (for some arbitrary reason) the cone's proportions have to stay the same, and the height and radius are in a fixed ratio k,

k = \frac{h}{r} = \frac{\operatorname d h}{\operatorname d r}.
This gives the total derivative with respect to r:

\frac{\operatorname dV}{\operatorname dr} = \frac{2 \pi r h}{3} + \frac{\pi r^2}{3}k
which simplifies to:

\frac{\operatorname dV}{\operatorname dr} = k\pi r^2
Similarly, the total derivative with respect to h is:

\frac{\operatorname dV}{\operatorname dh} = \pi r^2
The total derivative with respect to both r and h of the volume intended as scalar function of these two variables is given by the gradient vector \nabla V = \left(\frac{\partial V}{\partial r},\frac{\partial V}{\partial h}\right) = \left(\frac{2}{3}\pi rh, \frac{1}{3}\pi r^2\right).
Optimization
Partial derivatives appear in any calculusbased optimization problem with more than one choice variable. For example, in economics a firm may wish to maximize profit π(x, y) with respect to the choice of the quantities x and y of two different types of output. The first order conditions for this optimization are π_{x} = 0 = π_{y}. Since both partial derivatives π_{x} and π_{y} will generally themselves be functions of both arguments x and y, these two first order conditions form a system of two equations in two unknowns.
Science and engineering
Equations involving an unknown function's partial derivatives are called partial differential equations. These equations are used to mathematically approximate many physical phenomena like fluid flows, force in a spring spring, nerve conduction and are frequently encountered in physics, engineering, and other sciences and applied disciplines.
Notation
For the following examples, let f be a function in x, y and z.
Firstorder partial derivatives:

\frac{ \partial f}{ \partial x} = f_x = \partial_x f.
Secondorder partial derivatives:

\frac{ \partial^2 f}{ \partial x^2} = f_{xx} = \partial_{xx} f.
Secondorder mixed derivatives:

\frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = (f_{x})_{y} = f_{xy} = \partial_{yx} f.
Higherorder partial and mixed derivatives:

\frac{ \partial^{i+j+k} f}{ \partial x^i\, \partial y^j\, \partial z^k } = f^{(i, j, k)}.
When dealing with functions of multiple variables, some of these variables may be related to each other, and it may be necessary to specify explicitly which variables are being held constant. In fields such as statistical mechanics, the partial derivative of f with respect to x, holding y and z constant, is often expressed as

\left( \frac{\partial f}{\partial x} \right)_{y,z}.
Antiderivative analogue
There is a concept for partial derivatives that is analogous to antiderivatives for regular derivatives. Given a partial derivative, it allows for the partial recovery of the original function.
Consider the example of \frac{\partial z}{\partial x} = 2x+y. The "partial" integral can be taken with respect to x (treating y as constant, in a similar manner to partial differentiation):

z = \int \frac{\partial z}{\partial x} \,dx = x^2 + xy + g(y)
Here, the "constant" of integration is no longer a constant, but instead a function of all the variables of the original function except x. The reason for this is that all the other variables are treated as constant when taking the partial derivative, so any function which does not involve x will disappear when taking the partial derivative, and we have to account for this when we take the antiderivative. The most general way to represent this is to have the "constant" represent an unknown function of all the other variables.
Thus the set of functions x^2 + xy + g(y), where g is any oneargument function, represents the entire set of functions in variables x,y that could have produced the xpartial derivative 2x+y.
If all the partial derivatives of a function are known (for example, with the gradient), then the antiderivatives can be matched via the above process to reconstruct the original function up to a constant.
Higher order partial derivatives
Second and higher order partial derivatives are defined analogously to the higher order derivatives of univariate functions. For the function f(x, y, ...) the "own" second partial derivative with respect to x is simply the partial derivative of the partial derivative (both with respect to x):^{[3]}^{:316318}

\frac \equiv \partial \frac \equiv \frac \equiv f_.
The cross partial derivative with respect to x and y is obtained by taking the partial derivative of f with respect to x, and then taking the partial derivative of the result with respect to y, to obtain

\frac \equiv \partial \frac \equiv \frac \equiv f_.
Schwarz' theorem states that if the second derivatives are continuous the expression for the cross partial derivative is unaffected by which variable the partial derivative is taken with respect to first and which is taken second. That is,

\frac = \frac
or equivalently f_=f_.
Own and cross partial derivatives appear in the Hessian matrix which is used in the second order conditions in optimization problems.
See also
Notes

^ Miller, Jeff (20090614). "Earliest Uses of Symbols of Calculus". Earliest Uses of Various Mathematical Symbols. Retrieved 20090220.

^ This can also be expressed as the adjointness between the product space and function space constructions.

^ Chiang, Alpha C. Fundamental Methods of Mathematical Economics, McGrawHill, third edition, 1984.
External links

Hazewinkel, Michiel, ed. (2001), "Partial derivative",

Partial Derivatives at MathWorld
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.