 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Particle displacement

Article Id: WHEBN0000565031
Reproduction Date:

 Title: Particle displacement Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Particle displacement

Sound measurements
Characteristic
Symbols
Sound pressure  p, SPL
Particle velocity  v, SVL
Particle displacement  δ
Sound intensity  I, SIL
Sound power  P, SWL
Sound energy  W
Sound energy density  w
Sound exposure  E, SEL
Acoustic impedance  Z
Speed of sound  c
Audio frequency  AF
Transmission loss  TL

Particle displacement or displacement amplitude is a measurement of distance of the movement of a particle from its equilibrium position in a medium as it transmits a sound wave. The SI unit of particle displacement is the metre (m). In most cases this is a longitudinal wave of pressure (such as sound), but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling.

A particle of the medium undergoes displacement according to the particle velocity of the sound wave traveling through the medium, while the sound wave itself moves at the speed of sound, equal to 343 m/s in air at 20 °C.

## Contents

• Mathematical definition 1
• Progressive sine waves 2
• References and notes 4

## Mathematical definition

Particle displacement, denoted δ, is given by

\mathbf \delta = \int_{t} \mathbf v\, \mathrm{d}t

where v is the particle velocity.

## Progressive sine waves

The particle displacement of a progressive sine wave is given by

\delta(\mathbf{r},\, t) = \delta \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0}),

where

It follows that the particle velocity and the sound pressure along the direction of propagation of the sound wave x are given by

v(\mathbf{r},\, t) = \frac{\partial \delta}{\partial t} (\mathbf{r},\, t) = \omega \delta \cos\!\left(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0} + \frac{\pi}{2}\right) = v \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{v, 0}),
p(\mathbf{r},\, t) = -\rho c^2 \frac{\partial \delta}{\partial x} (\mathbf{r},\, t) = \rho c^2 k_x \delta \cos\!\left(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{\delta, 0} + \frac{\pi}{2}\right) = p \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \varphi_{p, 0}),

where

• v is the amplitude of the particle velocity;
• \varphi_{v, 0} is the phase shift of the particle velocity;
• p is the amplitude of the acoustic pressure;
• \varphi_{p, 0} is the phase shift of the acoustic pressure.

Taking the Laplace transforms of v and p with respect to time yields

\hat{v}(\mathbf{r},\, s) = v \frac{s \cos \varphi_{v,0} - \omega \sin \varphi_{v,0}}{s^2 + \omega^2},
\hat{p}(\mathbf{r},\, s) = p \frac{s \cos \varphi_{p,0} - \omega \sin \varphi_{p,0}}{s^2 + \omega^2}.

Since \varphi_{v,0} = \varphi_{p,0}, the amplitude of the specific acoustic impedance is given by

z(\mathbf{r},\, s) = |z(\mathbf{r},\, s)| = \left|\frac{\hat{p}(\mathbf{r},\, s)}{\hat{v}(\mathbf{r},\, s)}\right| = \frac{p}{v} = \frac{\rho c^2 k_x}{\omega}.

Consequently, the amplitude of the particle displacement is related to those of the particle velocity and the sound pressure by

\delta = \frac{v}{\omega},
\delta = \frac{p}{\omega z(\mathbf{r},\, s)}.

## References and notes

1. ^ Julian W. Gardner, V. K. Varadan, Osama O. Awadelkarim (2001). Microsensors, MEMS, and Smart Devices. John Wiley and Sons. pp. 321–322.
2. ^ Arthur Schuster (1904). An Introduction to the Theory of Optics. London: Edward Arnold.
3. ^