World Library  
Flag as Inappropriate
Email this Article

Physical strength

Article Id: WHEBN0000788074
Reproduction Date:

Title: Physical strength  
Author: World Heritage Encyclopedia
Language: English
Subject: Bruce Djite, Bodybuilding, Play (activity), General fitness training, Overtraining
Collection: Physical Exercise
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Physical strength

Natalia Zabolotnaya lifting 160 kilograms over her head

Physical strength is the measure of an animal's exertion of force on physical objects. Increasing physical strength is the goal of strength training.

Contents

  • Overview 1
  • Strength capability 2
  • Prediction of static strength 3
  • See also 4
  • References 5

Overview

An individual's physical strength is determined by two factors; the cross-sectional area of muscle fibers recruited to generate force and the intensity of the recruitment. Individuals with a high proportion of type I slow twitch muscle fibers will be relatively weaker than a similar individual with a high proportion of type II fast twitch fibers, but would have a greater inherent capacity for physical endurance. The genetic inheritance of muscle fiber type sets the outermost boundaries of physical strength possible (barring the use of enhancing agents such as testosterone), though the unique position within this envelope is determined by training. Individual muscle fiber ratios can be determined through a muscle biopsy. Other considerations are the ability to recruit muscle fibers for a particular activity, joint angles, and the length of each limb. For a given cross-section, shorter limbs are able to lift more weight. The ability to gain muscle also varies person to person, based mainly upon genes dictating the amounts of hormones secreted, but also on sex, age, health of the person, and adequate nutrients in the diet. A one rep maximum is the test to determine maximum muscular strength.

Strength capability

There are various ways to measure physical strength of a person or population. Strength capability analysis is usually done in the field of ergonomics where a particular task (e.g. lifting a load, pushing a cart, etc.) and/or a posture is evaluated and compared to the capabilities of the section of the population that the task is intended towards. The external reactive moments and forces on the joints are usually used in such cases. The strength capability of the joint is denoted by the amount of moment that the muscle force can create at the joint to counter the external moment.

Skeletal muscles produce reactive forces and moments at the joints. To avoid injury or fatigue, when person is performing a task, such as pushing or lifting a load, the external moments created at the joints due to the load at the hand and the weight of the body segments must be ideally less than the muscular moment strengths at the joint.

One of the first sagittal-plane models to predict strength was developed by Chaffin in 1969.[1] Based on this model, the external moments at each joint must not exceed the muscle strength moments at that joint.

Mj/L < Sj

Where, Sj is the muscle strength moment at joint, j, and Mj/L is the external moment at the joint, j, due to load, L and the body segments preceding the joint in the top-down analysis.

Top-down analysis is the method of calculating the reactive moments and forces at each joint starting at the hand, all the way till the ankle and foot. In a 6-segment model, the joints considered are elbow, shoulder, L5/S1 disc of the spine, hip, knee and ankle. It is common to ignore the wrist joint in manual calculations. Software intended for such calculation use the wrist joint also, dividing the lower arm into hand and forearm segments.

Prediction of static strength

Static strength prediction is the method of predicting the strength capabilities of a person or a population (based on anthropometry) for a particular task and/or posture (an isometric contraction). Manual calculations are usually performed using the top-down analysis on a six or seven-link model, based on available information about the case and then compared to standard guidelines, such as the one provided by the National Institute for Occupational Safety and Health, to predict capability.

See also

References

  1. ^ Chaffin DB; Andersson GBJ; Martin BJ (1999). Occupational Biomechanics, 3rd Edition. New York:  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.