In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a nonquantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.
As with classical mechanics, the subject can be divided into "kinematics"; the description of motion by specifying positions, velocities and accelerations, and "dynamics"; a full description by considering energies, momenta, and angular momenta and their conservation laws, and forces acting on particles or exerted by particles. There is however a subtlety; what appears to be "moving" and what is "at rest"—which is termed by "statics" in classical mechanics—depends on the relative motion of observers who measure in frames of reference.
Although some definitions and concepts from classical mechanics do carry over to SR, such as force as the time derivative of momentum (Newton's second law), the work done by a particle as the line integral of force exerted on the particle along a path, and power as the time derivative of work done, there are a number of significant modifications to the remaining definitions and formulae. SR states that motion is relative and the laws of physics are the same for all experimenters irrespective of their inertial reference frames. In addition to modifying notions of space and time, SR forces one to reconsider the concepts of mass, momentum, and energy all of which are important constructs in Newtonian mechanics. SR shows that these concepts are all different aspects of the same physical quantity in much the same way that it shows space and time to be interrelated. Consequently, another modification is the concept of the center of mass of a system, which is straightforward to define in classical mechanics but much less obvious in relativity  see relativistic center of mass for details.
The equations become more complicated in the more familiar threedimensional vector calculus formalism, due to the nonlinearity in the Lorentz factor, which accurately accounts for relativistic velocity dependence and the speed limit of all particles and fields. However, they have a simpler and elegant form in fourdimensional spacetime, which includes flat Minkowski space (SR) and curved spacetime (GR), because threedimensional vectors derived from space and scalars derived from time can be collected into four vectors, or fourdimensional tensors. However, the six component angular momentum tensor is sometimes called a bivector because in the 3D viewpoint it is two vectors (one of these, the conventional angular momentum, being an axial vector).
Relativistic kinematics
The relativistic fourvelocity, that is the fourvector representing velocity in relativity, is defined as follows:

\boldsymbol{\mathbf{U}} = \frac{d \boldsymbol{\mathbf{X}}}{d \tau} = \left(\frac{c dt}{d\tau} , \frac{d\mathbf{x}}{d\tau} \right)
In the above, τ is the proper time of the path through spacetime, called the worldline, followed by the object velocity the above represents, and

\boldsymbol{\mathbf{X}} = (ct, \mathbf{x} )
is the fourposition; the coordinates of an event. Due to time dilation, the proper time is the time between two events in a frame of reference where they take place at the same location. The proper time is related to coordinate time t by:

\frac{d \tau}{d t} = \frac{1}{\gamma(\mathbf{v})}
where γ(v) is the Lorentz factor:

\gamma(\mathbf{v}) = \frac{1}{\sqrt{1  \mathbf{v}\cdot\mathbf{v}/c^2}}\,\rightleftharpoons\,\gamma(v) = \frac{1}{\sqrt{1  (v/c)^2}}.
(either version may be quoted) so it follows:

\boldsymbol{\mathbf{U}} = \gamma(\mathbf{v}) (c, \mathbf{v})
The first three terms, excepting the factor of γ(v), is the velocity as seen by the observer in their own reference frame. The γ(v) is determined by the velocity v between the observer's reference frame and the object's frame, which is the frame in which its proper time is measured. This quantity is invariant under Lorentz transformation, so to check to see what an observer in a different reference frame sees, one simply multiplies the velocity fourvector by the Lorentz transformation matrix between the two reference frames.
Relativistic dynamics
Relativistic energy and momentum
There are a couple of (equivalent) ways to define momentum and energy in SR. One method uses conservation laws. If these laws are to remain valid in SR they must be true in every possible reference frame. However, if one does some simple thought experiments using the Newtonian definitions of momentum and energy, one sees that these quantities are not conserved in SR. One can rescue the idea of conservation by making some small modifications to the definitions to account for relativistic velocities. It is these new definitions which are taken as the correct ones for momentum and energy in SR.
The fourmomentum of an object is straightforward, identical in form to the classical momentum, but replacing 3vectors with 4vectors:

\boldsymbol{\mathbf{P}} = m_0 \boldsymbol{\mathbf{U}} = (E/c, \mathbf{p})
The energy and momentum of an object with invariant mass m_{0} (also called rest mass), moving with velocity v with respect to a given frame of reference, are respectively given by

\begin{align} E &= \gamma(\mathbf{v}) m_0 c^2 \\ \mathbf{p} &= \gamma(\mathbf{v}) m_0 \mathbf{v} \end{align}
The factor of γ(v) comes from the definition of the fourvelocity described above. The appearance of the γ factor has an alternative way of being stated, explained next.
Rest mass and relativistic mass
The quantity

m=\gamma(\mathbf{v}) m_0
is often called the relativistic mass of the object in the given frame of reference.^{[1]}
This makes the relativistic relation between the spatial velocity and the spatial momentum look identical. However, this can be misleading, as it is not appropriate in special relativity in all circumstances. For instance, kinetic energy and force in special relativity can not be written exactly like their classical analogues by only replacing the mass with the relativistic mass. Moreover, under Lorentz transformations, this relativistic mass is not invariant, while the rest mass is. For this reason many people find it easier use the rest mass (thereby introduce γ through the 4velocity or coordinate time), and discard the concept of relativistic mass.
Lev B. Okun suggested that "this terminology [...] has no rational justification today", and should no longer be taught.^{[2]}
Other physicists, including Wolfgang Rindler and T. R. Sandin, have argued that relativistic mass is a useful concept and there is little reason to stop using it.^{[3]} See mass in special relativity for more information on this debate.
Some authors use m for relativistic mass and m_{0} for rest mass,^{[4]} others simply use m for rest mass. This article uses the former convention for clarity.
The energy and momentum of an object with invariant mass m_{0} are related by the formulas

E^2  (p c)^2 = (m_0 c^2)^2 \,

\mathbf{p} c^2 = E \mathbf{v} \,.
The first is referred to as the relativistic energy–momentum relation. While the energy E and the momentum p depend on the frame of reference in which they are measured, the quantity E^{2} − (pc)^{2} is invariant, and arises as −c^{2} times the squared magnitude of the 4momentum vector which is −(m_{0}c)^{2}.
It should be noted that the invariant mass of a system

{m_0}_\text{tot} = \frac {\sqrt{E_\text{tot}^2  (p_\text{tot}c)^2}} {c^2}
is different from the sum of the rest masses of the particles of which it is composed due to kinetic energy and binding energy. Rest mass is not a conserved quantity in special relativity unlike the situation in Newtonian physics. However, if an object is not changing internally, then its rest mass will not change and can be calculated with the same result in any frame of reference.
A particle whose rest mass is zero is called massless. Photons and gravitons are thought to be massless; and neutrinos are nearly so.
Mass–energy equivalence
The relativistic energy–momentum equation holds for all particles, even for massless particles for which m_{0} = 0. In this case:

E = pc
When substituted into Ev = c^{2}p, this gives v = c: massless particles (such as photons) always travel at the speed of light.
Notice that the rest mass of a composite system will generally be slightly different from the sum of the rest masses of its parts since, in its rest frame, their kinetic energy will increase its mass and their (negative) binding energy will decrease its mass. In particular, a hypothetical "box of light" would have rest mass even though made of particles which do not since their momenta would cancel.
Looking at the above formula for invariant mass of a system, one sees that, when a single massive object is at rest (v = 0, p = 0), there is a nonzero mass remaining: m_{0} = E/c^{2}. The corresponding energy, which is also the total energy when a single particle is at rest, is referred to as "rest energy". In systems of particles which are seen from a moving inertial frame, total energy increases and so does momentum. However, for single particles the rest mass remains constant, and for systems of particles the invariant mass remain constant, because in both cases, the energy and momentum increases subtract from each other, and cancel. Thus, the invariant mass of systems of particles is a calculated constant for all observers, as is the rest mass of single particles.
The mass of systems and conservation of invariant mass
For systems of particles, the energy–momentum equation requires summing the momentum vectors of the particles:

E^2  \mathbf{p}\cdot\mathbf{p} c^2 = m_0^2 c^4
The inertial frame in which the momenta of all particles sums to zero is called the center of momentum frame. In this special frame, the relativistic energy–momentum equation has p = 0, and thus gives the invariant mass of the system as merely the total energy of all parts of the system, divided by c^{2}

m_{0,\,{\rm system}} = \sum_n E_n/c^2
This is the invariant mass of any system which is measured in a frame where it has zero total momentum, such as a bottle of hot gas on a scale. In such a system, the mass which the scale weighs is the invariant mass, and it depends on the total energy of the system. It is thus more than the sum of the rest masses of the molecules, but also includes all the totaled energies in the system as well. Like energy and momentum, the invariant mass of isolated systems cannot be changed so long as the system remains totally closed (no mass or energy allowed in or out), because the total relativistic energy of the system remains constant so long as nothing can enter or leave it.
An increase in the energy of such a system which is caused by translating the system to an inertial frame which is not the center of momentum frame, causes an increase in energy and momentum without an increase in invariant mass. E = m_{0}c^{2}, however, applies only to isolated systems in their centerofmomentum frame where momentum sums to zero.
Taking this formula at face value, we see that in relativity, mass is simply energy by another name (and measured in different units). In 1927 Einstein remarked about special relativity, "Under this theory mass is not an unalterable magnitude, but a magnitude dependent on (and, indeed, identical with) the amount of energy."^{[5]}
Closed (isolated) systems
In a "totallyclosed" system (i.e., isolated system) the total energy, the total momentum, and hence the total invariant mass are conserved. Einstein's formula for change in mass translates to its simplest ΔE = Δmc^{2} form, however, only in nonclosed systems in which energy is allowed to escape (for example, as heat and light), and thus invariant mass is reduced. Einstein's equation shows that such systems must lose mass, in accordance with the above formula, in proportion to the energy they lose to the surroundings. Conversely, if one can measure the differences in mass between a system before it undergoes a reaction which releases heat and light, and the system after the reaction when heat and light have escaped, one can estimate the amount of energy which escapes the system.
Chemical and nuclear reactions
In both nuclear and chemical reactions, such energy represents the difference in binding energies of electrons in atoms (for chemistry) or between nucleons in nuclei (in atomic reactions). In both cases, the mass difference between reactants and (cooled) products measures the mass of heat and light which will escape the reaction, and thus (using the equation) give the equivalent energy of heat and light which may be emitted if the reaction proceeds.
In chemistry, the mass differences associated with the emitted energy are around 10^{−9} of the molecular mass.^{[6]} However, in nuclear reactions the energies are so large that they are associated with mass differences, which can be estimated in advance, if the products and reactants have been weighed (atoms can be weighed indirectly by using atomic masses, which are always the same for each nuclide). Thus, Einstein's formula becomes important when one has measured the masses of different atomic nuclei. By looking at the difference in masses, one can predict which nuclei have stored energy that can be released by certain nuclear reactions, providing important information which was useful in the development of nuclear energy and, consequently, the nuclear bomb. Historically, for example, Lise Meitner was able to use the mass differences in nuclei to estimate that there was enough energy available to make nuclear fission a favorable process. The implications of this special form of Einstein's formula have thus made it one of the most famous equations in all of science.
Center of momentum frame
The equation E = m_{0}c^{2} applies only to isolated systems in their center of momentum frame. It has been popularly misunderstood to mean that mass may be converted to energy, after which the mass disappears. However, popular explanations of the equation as applied to systems include open (nonisolated) systems for which heat and light are allowed to escape, when they otherwise would have contributed to the mass (invariant mass) of the system.
Historically, confusion about mass being "converted" to energy has been aided by confusion between mass and "matter", where matter is defined as fermion particles. In such a definition, electromagnetic radiation and kinetic energy (or heat) are not considered "matter". In some situations, matter may indeed be converted to nonmatter forms of energy (see above), but in all these situations, the matter and nonmatter forms of energy still retain their original mass.
For isolated systems (closed to all mass and energy exchange), mass never disappears in the center of momentum frame, because energy cannot disappear. Instead, this equation, in context, means only that when any energy is added to, or escapes from, a system in the centerofmomentum frame, the system will be measured as having gained or lost mass, in proportion to energy added or removed. Thus, in theory, if an atomic bomb were placed in a box strong enough to hold its blast, and detonated upon a scale, the mass of this closed system would not change, and the scale would not move. Only when a transparent "window" was opened in the superstrong plasmafilled box, and light and heat were allowed to escape in a beam, and the bomb components to cool, would the system lose the mass associated with the energy of the blast. In a 21 kiloton bomb, for example, about a gram of light and heat is created. If this heat and light were allowed to escape, the remains of the bomb would lose a gram of mass, as it cooled. In this thoughtexperiment, the light and heat carry away the gram of mass, and would therefore deposit this gram of mass in the objects that absorb them.^{[7]}
Angular momentum
In relativistic mechanics, the timevarying mass moment

\mathbf{N} = m \left( \mathbf{x}  t \mathbf{v} \right)
and orbital 3angular momentum

\mathbf{L} = \mathbf{x}\times \mathbf{p}
of a pointlike particle are combined into a fourdimensional bivector in terms of the 4position X and the 4momentum P of the particle:^{[8]}^{[9]}

\mathbf{M} = \mathbf{X}\wedge\mathbf{P}
where ∧ denotes the exterior product. This tensor is additive: the total angular momentum of a system is the sum of the angular momentum tensors for each constituent of the system. So, for an assembly of discrete particles one sums the angular momentum tensors over the particles, or integrates the density of angular momentum over the extent of a continuous mass distribution.
Each of the six components forms a conserved quantity when aggregated with the corresponding components for other objects and fields.
Force
In special relativity, Newton's second law does not hold in the form F = ma, but it does if it is expressed as

\mathbf{F} = \frac{d\mathbf{p}}{dt}
where p = γ(v)m_{0}v is the momentum as defined above and m_{0} is the invariant mass. Thus, the force is given by

\mathbf{F} = \gamma(\mathbf{v})^3 m_0 \, \mathbf{a}_\parallel + \gamma(\mathbf{v}) m_0 \, \mathbf{a}_\perp

Consequently in some old texts, γ(v)^{3}m_{0} is referred to as the longitudinal mass, and γ(v)m_{0} is referred to as the transverse mass, which is numerically the same as the relativistic mass. See mass in special relativity.
If one inverts this to calculate acceleration from force, one gets

\mathbf{a} = \frac{1}{m_0 \gamma(\mathbf{v})} \left( \mathbf{F}  \frac{ ( \mathbf{v} \cdot \mathbf{F} ) \mathbf{v} }{c^2} \right) \,.
The force described in this section is the classical 3D force which is not a fourvector. This 3D force is the appropriate concept of force since it is the force which obeys Newton's third law of motion. It should not be confused with the socalled fourforce which is merely the 3D force in the comoving frame of the object transformed as if it were a fourvector. However, the density of 3D force (linear momentum transferred per unit fourvolume) is a fourvector (density of weight +1) when combined with the negative of the density of power transferred.
Torque
The torque acting on a pointlike particle is defined as the derivative of the angular momentum tensor given above with respect to proper time:^{[10]}^{[11]}

\boldsymbol{\Gamma} = \frac{d \mathbf{M}}{d\tau} = \mathbf{X}\wedge \mathbf{F}
or in tensor components:

\Gamma_{\alpha\beta} = X_\alpha F_\beta  X_\beta F_\alpha
where F is the 4d force acting on the particle at the event X. As with angular momentum, torque is additive, so for an extended object one sums or integrates over the distribution of mass.
Kinetic energy
The workenergy theorem says^{[12]} the change in kinetic energy is equal to the work done on the body. In special relativity:

\begin{align} \Delta K = W = [\gamma_1(v_1)  \gamma_0(v_0)] m_0c^2.\end{align}

If in the initial state the body was at rest, so v_{0} = 0 and γ_{0}(v_{0}) = 1, and in the final state it has speed v_{1} = v, setting γ_{1}(v_{1}) = γ(v), the kinetic energy is then;

K = [\gamma(v)  1]m_0 c^2\,,
a result that can be directly obtained by subtracting the rest energy m_{0}c^{2} from the total relativistic energy γ(v)m_{0}c^{2}.
Classical limit
The Lorentz factor γ(v) can be expanded into a Taylor series or binomial series for (v/c)^{2} < 1, obtaining:

\gamma = \dfrac{1}{\sqrt{1  (v/c)^2}} = \sum_{n=0}^{\infty} \left(\dfrac{v}{c}\right)^{2n}\prod_{k=1}^n \left(\dfrac{2k  1}{2k}\right) = 1 + \dfrac{1}{2} \left(\dfrac{v}{c}\right)^2 + \dfrac{3}{8} \left(\dfrac{v}{c}\right)^4 + \dfrac{5}{16} \left(\dfrac{v}{c}\right)^6 + \cdots
and consequently

E  m_0 c^2 = \frac{1}{2} m_0 v^2 + \frac{3}{8} \frac{m_0 v^4}{c^2} + \frac{5}{16} \frac{m_0 v^6}{c^4} + \cdots ;

\mathbf{p} = m_0 \mathbf{v} + \frac{1}{2} \frac{m_0 v^2 \mathbf{v}}{c^2} + \frac{3}{8} \frac{m_0 v^4 \mathbf{v}}{c^4} + \frac{5}{16} \frac{m_0 v^6 \mathbf{v}}{c^6} + \cdots .
For velocities much smaller than that of light, one can neglect the terms with c^{2} and higher in the denominator. These formulas then reduce to the standard definitions of Newtonian kinetic energy and momentum. This is as it should be, for special relativity must agree with Newtonian mechanics at low velocities.
See also
References
Notes

^ Philip Gibbs, Jim Carr and Don Koks (2008). "What is relativistic mass?". Usenet Physics FAQ. Retrieved 20080919. Note that in 2008 the last editor, Don Koks, rewrote a significant portion of the page, changing it from a view extremely dismissive of the usefulness of relativistic mass to one which hardly questions it. The previous version was: Philip Gibbs and Jim Carr (1998). "Does mass change with speed?". Usenet Physics FAQ. Archived from the original on 20070630.

^ Lev B. Okun (July 1989). "The Concept of Mass" (subscription required). Physics Today 42 (6): 31–36.

^ T. R. Sandin (November 1991). "In defense of relativistic mass" (subscription required). American Journal of Physics 59 (11): 1032.

^ See, for example:

^ Einstein on Newton

^ Randy Harris (2008). Modern Physics: Second Edition. Pearson AddisonWelsey. p. 38.

^ E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., New York. 1992. ISBN 0716723271, see pp. 2489 for discussion of mass remaining constant after detonation of nuclear bombs, until heat is allowed to escape.

^ R. Penrose (2005). Note: Some authors, including Penrose, use Latin letters in this definition, even though it is conventional to use Greek indices for vectors and tensors in spacetime.

^ M. Fayngold (2008). Special Relativity and How it Works. John Wiley & Sons. pp. 137–139.

^ S. Aranoff (1969). "Torque and angular momentum on a system at equilibrium in special relativity". American journal of physics 37. This author uses T for torque, here we use capital Gamma Γ since T is most often reserved for the stress–energy tensor.

^ S. Aranoff (1972). "Equilibrium in special relativity". Nuovo Cimento 10: 159.

^ R.C.Tolman "Relativity Thermodynamics and Cosmology" pp4748

C. Chryssomalakos, H. HernandezCoronado, E. Okon (2009). "Center of mass in special and general relativity and its role in an effective description of spacetime". J.Phys.Conf.Ser. (Mexico).
Further reading

General scope and special/general relativity

P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray.

G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press.

P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co.

R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer.

Concepts of Modern Physics (4th Edition), A. Beiser, Physics, McGrawHill (International), 1987, ISBN 0071001441

C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill.

T. Frankel (2012). The Geometry of Physics (3rd ed.). Cambridge University Press.

L.H. Greenberg (1978). Physics with Modern Applications. HoltSaunders International W.B. Saunders and Co.

A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill.

Electromagnetism and special relativity

Classical mechanics and special relativity

General relativity
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.