 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Rotatum

Article Id: WHEBN0037202680
Reproduction Date:

 Title: Rotatum Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Rotatum

In physics, Rotatum is the derivative of torque with respect to time. Expressed as an equation, rotatum Ρ is:

\vec P = \frac{d \vec \tau}{dt}

where τ is torque and \frac{\mathrm{d}}{\mathrm{d}t} is the derivative with respect to time t.

The term rotatum is not universally recognized but is commonly used. this word derived from Latin word rotātus meaning to rotate. The units of rotatum are force times distance per time, or equivalently, mass times length squared per time cubed; in the SI unit system this is kilogram metre squared per second cubed (kg·m2/s3), or Newtons times meter per second (N·m/s).

## Relation to other physical quantities

Newton's second law for angular motion says that:

\mathbf{\tau}=\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}

where L is angular momentum, so if we combine the above two equations:

\mathbf{\Rho}=\frac{\mathrm{d}\mathbf{\tau}}{\mathrm{d}t}=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t}\right)=\frac{\mathrm{d}^2\mathbf{L}}{\mathrm{d}t^2}=\frac{\mathrm{d}^2(I\cdot\mathbf{\omega})}{\mathrm{d}t^2}

where I is moment of Inertia and \omega is angular velocity. If the moment of inertia isn't changing over time (i.e. it's constant), then:

\mathbf{\Rho}=I\frac{\mathrm{d}^2\omega}{\mathrm{d}t^2}

which can also be written as:

\mathbf{\Rho}=I\zeta

where ς is Angular jerk.