World Library  
Flag as Inappropriate
Email this Article

Saturation (magnetic)

Article Id: WHEBN0002159714
Reproduction Date:

Title: Saturation (magnetic)  
Author: World Heritage Encyclopedia
Language: English
Subject: Inductor, Magnetic amplifier, Protective relay, Ferrite core, Geomagnetically induced current
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Saturation (magnetic)

Magnetization curves of 9 ferromagnetic materials, showing saturation. 1.Sheet steel, 2.Silicon steel, 3.Cast steel, 4.Tungsten steel, 5.Magnet steel, 6.Cast iron, 7.Nickel, 8.Cobalt, 9.Magnetite[1]

Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off. (It continues to increase very slowly due to the vacuum permeability.) It is a characteristic particularly of ferromagnetic (and ferrimagnetic) materials, such as iron, nickel, cobalt and their alloys.

Description

Saturation is most clearly seen in the magnetization curve (also called BH curve or hysteresis curve) of a substance, as a bending to the right of the curve (see graph at right). As the H field increases, the B field approaches a maximum value asymptotically, the saturation level for the substance. Technically, above saturation, the B field continues increasing, but at the paramagnetic rate, which is 3 orders of magnitude smaller than the ferromagnetic rate seen below saturation.[2]

The relation between the magnetizing field H and the magnetic field B can also be expressed as the magnetic permeability: \mu = B / H or the relative permeability \mu_r = \mu/\mu_0, where \mu_0 is the vacuum permeability. The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one.[2][3]

Different materials have different saturation levels. For example, high permeability iron alloys used in transformers reach magnetic saturation at 1.6 - 2.2 teslas (T),[4] whereas ferrites saturate at 0.2 - 0.5 T.[5] Some amorphous alloys saturate at 1.2-1.3 T.[6] Mu metal saturates at around 0.8 T.[7][8]

Due to saturation, the magnetic permeability μf of a ferromagnetic substance reaches a maximum and then declines

Explanation

Ferromagnetic materials (like iron) are composed of microscopic regions called magnetic domains, that act like tiny permanent magnets that can change their direction of magnetization. Before an external magnetic field is applied to the material, the domains' magnetic fields are oriented randomly, effectively cancelling each other out, and so its magnetic field is negligibly small. When an external magnetizing field H is applied to the material, it penetrates the material and aligns the domains, causing their tiny magnetic fields to turn and align parallel to the external field, adding together to create a large magnetic field B which extends out from the material. This is called magnetization. The stronger the external magnetic field H, the more the domains align yielding a higher magnetic flux density B. Saturation occurs when practically all the domains are lined up, so further increases in H can't increase B beyond the increment that would be caused in a nonmagnetic material, in other words, cannot cause further alignment of the domains.

Effects and uses

Saturation limits the maximum magnetic fields achievable in ferromagnetic-core electromagnets and transformers to around 2 T, which puts a limit on the minimum size of their cores. This is one reason why high power motors, generators, and utility transformers are physically large; because they must have large magnetic cores.

In electronic circuits, transformers and inductors with ferromagnetic cores operate nonlinearly when the current through them is large enough to drive their core materials into saturation. This means that their inductance and other properties vary with changes in drive current. In linear circuits this is usually considered an unwanted departure from ideal behavior. When AC signals are applied, this nonlinearity can cause the generation of harmonics and intermodulation distortion. To prevent this, the level of signals applied to iron core inductors must be limited so they don't saturate. To lower its effects, an air gap is created in some kinds of transformer cores.[9] The saturation current, the current through the winding required to saturate the magnetic core, is given by manufacturers in the specifications for many inductors and transformers.

On the other hand, saturation is exploited in some electronic devices. Saturation is employed to limit current in saturable-core transformers, used in arc welding, and ferroresonant transformers which serve as voltage regulators. When the primary current exceeds a certain value, the core is pushed into its saturation region, limiting further increases in secondary current. In a more sophisticated application, saturable core inductors and magnetic amplifiers use a DC current through a separate winding to control an inductor's impedance. Varying the current in the control winding moves the operating point up and down in the saturation curve, controlling the AC current through the inductor. These are used in variable fluorescent light ballasts, and power control systems.[10]

The magnetic saturation is also exploited in the fluxgate magnetometers and the fluxgate compasses.

See also

References

  1. ^ Steinmetz, Charles (1917). "fig. 42". Theory and Calculation of Electric Circuits. McGraw-Hill. 
  2. ^ a b Bozorth, Richard M. (1993) [Reissue of 1951 publication]. Ferromagnetism. AN IEEE Press Classic Reissue.  
  3. ^ Bakshi, V.U.; U.A.Bakshi (2009). Basic Electrical Engineering. Technical Publications. pp. 3–31.  
  4. ^ Laughton, M. A.; Warne, D. F., eds. (2003). "8". Electrical Engineer's Reference Book (Sixteenth ed.). Newnes.  
  5. ^ Chikazumi, Sōshin (1997). "table 9.2". Physics of Ferromagnetism.  
  6. ^ USA 5126907, Yoshihiro Hamakawa, Hisashi Takano, Naoki Koyama, Eijin Moriwaki, Shinobu Sasaki, Kazuo Shiiki, "Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density", issued 1992 
  7. ^ "Shielding Materials". K+J Magnetics. Retrieved 2013-05-07. 
  8. ^ "Mumetal is one of a family of three Nickel-Iron alloys". mumetal.co.uk. Retrieved 2013-05-07. 
  9. ^ Rod, Elliott (May 2010). "Transformers - The Basics (Section 2)". Beginner's Guide to Transformers. Elliott Sound Products. Retrieved 2011-03-17. 
  10. ^ Choudhury, D. Roy (2005). "2.9.1". Modern Control Engineering. Prentice-Hall of India.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.