Strain Wave Gearing

Strain Wave Gearing (also known as "harmonic drive" because Harmonic Drive gears are strain wave gears produced by the Harmonic Drive companies) is a special type of mechanical gear system that can improve certain characteristics compared to traditional gearing systems (such as Helical Gears or Planetary Gears). It was invented in 1957 by C.W. Musser. The advantages include: no backlash, compactness and light weight, high gear ratios, reconfigurable ratios within a standard housing, good resolution and excellent repeatability (linear representation) when repositioning inertial loads,[1] high torque capability, and coaxial input and output shafts.[2] High gear reduction ratios are possible in a small volume (a ratio from 30:1 up to 320:1 is possible in the same space in which planetary gears typically only produce a 10:1 ratio).

Disadvantages include a tendency for 'wind-up' (a torsional spring rate)[1] and potential degradation over time from mechanical shocks and environment.[3]

They are typically used in industrial motion control, machine tool, printing machine, robotics[4] and aerospace,[5] for gear reduction but may also be used to increase rotational speed, or for differential gearing.


The basic concept of strain wave gearing (SWG) was introduced by C.W. Musser in his 1957 patent.[6] It was first used successfully in 1964 by Hasegawa Gear Works, Ltd. and USM Co., Ltd. Later, Hasegawa Gear Works, Ltd. became Harmonic Drive Systems Inc. located in Japan and USM Co., Ltd. Harmonic Drive division became Harmonic Drive Technologies Inc.[7][8]

The electrically-driven wheels of the Apollo Lunar Rover included strain wave gears in their gearing. Also, the winches used on Skylab to deploy the solar panels were powered using strain wave gears. Both of these system were developed by The Harmonic Drive Division of United Shoe Machinery Corp.

On January 1, 2006, Harmonic Drive Technologies/Nabtesco of Peabody, MA and HD Systems of Hauppauge, NY, merged to form a new joint venture, Harmonic Drive LLC.[2] HD Systems, Inc. was a subsidiary company of Harmonic Drive System, Inc. Offices are maintained in both Peabody and Hauppauge.


The strain wave gearing theory is based on elastic dynamics and utilizes the flexibility of metal. The mechanism has three basic components: a wave generator, a flex spline, and a circular spline. More complex versions have a fourth component normally used to shorten the overall length or to increase the gear reduction within a smaller diameter, but still follow the same basic principles.

The wave generator is made up of two separate parts: an elliptical disk called a wave generator plug and an outer ball bearing. The gear plug is inserted into the bearing, giving the bearing an elliptical shape as well.

The flex spline is like a shallow cup. The sides of the spline are very thin, but the bottom is thick and rigid. This results in significant flexibility of the walls at the open end due to the thin wall, but in the closed side being quite rigid and able to be tightly secured (to a shaft, for example). Teeth are positioned radially around the outside of the flex spline. The flex spline fits tightly over the wave generator, so that when the wave generator plug is rotated, the flex spline deforms to the shape of a rotating ellipse but does not rotate with the wave generator.

The circular spline is a rigid circular ring with teeth on the inside. The flex spline and wave generator are placed inside the circular spline, meshing the teeth of the flex spline and the circular spline. Because the flex spline has an elliptical shape, its teeth only actually mesh with the teeth of the circular spline in two regions on opposite sides of the flex spline, along the major axis of the ellipse.

Assume that the wave generator is the input rotation. As the wave generator plug rotates, the flex spline teeth which are meshed with those of the circular spline change. The major axis of the flex spline actually rotates with wave generator, so the points where the teeth mesh revolve around the center point at the same rate as the wave generator. The key to the design of the harmonic drive is that there are fewer teeth (for example two fewer) on the flex spline than there are on the circular spline. This means that for every full rotation of the wave generator, the flex spline would be required to rotate a slight amount (two teeth, for example) backward relative to the circular spline. Thus the rotation action of the wave generator results in a much slower rotation of the flex spline in the opposite direction.

For a strain wave gearing mechanism, the gearing reduction ratio can be calculated from the number of teeth on each gear:

\text{reduction ratio} = \frac {\text{flex spline teeth} - \text{circular spline teeth}} {\text{flex spline teeth}}

For example, if there are 202 teeth on the circular spline and 200 on the flex spline, the reduction ratio is (200 − 202)/200 = −0.01

Thus the flex spline spins at 1/100 the speed of the wave generator plug and in the opposite direction. This allows different reduction ratios to be set without changing the mechanism's shape, increasing its weight, or adding stages. The range of possible gear ratios is limited by tooth size limits for a given configuration.

See also


External links

  • Robotic Hand displays speed of strain wave gears
  • Operating Principles,
  • Strain Wave Gears, Roy Boardman
  • Harmonic Drive Cut-Away Video
  • History of Harmonic Drive AG
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.