World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0018581082
Reproduction Date:

Title: Tarantula  
Author: World Heritage Encyclopedia
Language: English
Subject: Spider, Heteroscodratoxin-1, Pamphobeteus nigricolor, Pet, Spider taxonomy
Collection: Theraphosidae, Venomous Spiders
Publisher: World Heritage Encyclopedia


Tarantulas comprise a group of often hairy and very large arachnids belonging to the Theraphosidae family of spiders, of which approximately 900 species have been identified. This article only describes members of Theraphosidae, although some other members of the same suborder are commonly referred to as "tarantulas". Most species of tarantulas are not dangerous to humans, and some species have become popular in the exotic pet trade.


  • Overview 1
  • Etymology 2
    • New-world and other divergent usages 2.1
  • Distribution 3
  • Habits 4
  • Appendages 5
    • Silk-producing feet 5.1
  • Digestive system 6
  • Nervous system 7
  • Respiratory system 8
  • Circulatory system 9
  • Predators 10
  • Bites and urticating bristles 11
  • Medical implications 12
  • Sexual dimorphism 13
  • Life cycle 14
    • Reproduction 14.1
  • Taxonomy 15
  • Fossil record 16
  • See also 17
  • References 18
  • Further reading 19
  • External links 20


Like all arthropods, the tarantula is an invertebrate that relies on an exoskeleton for muscular support. Like other Arachnida a tarantula’s body comprises two main parts, the prosoma (or cephalothorax) and the opisthosoma (or abdomen). The prosoma and opisthosoma are connected by the pedicle, or pregenital somite. This waist-like connecting piece is actually part of the prosoma and allows the opisthosoma to move in a wide range of motion relative to the prosoma.

Tarantulas sizes range from as small as a fingernail to as large as a dinner plate when the legs are fully extended. Depending on the species, the body length of tarantulas ranges from 2.5 to 10 centimetres (1 to 4 in), with leg spans of 8–30-centimetre (3–12 in). Leg span is determined by measuring from the tip of the back leg to the tip of the front leg on the opposite side. Some of the largest species of tarantula may weigh over 85 grams (3 oz); the largest of all, the goliath birdeater (Theraphosa blondi) from Venezuela and Brazil, has been reported to attain a weight of 150 grams (5.3 oz) and a leg-span of up to 30 centimetres (12 in), males being the longer and females greater in girth.

Theraphosa apophysis (the pinkfoot goliath) was described 187 years after the goliath birdeater; therefore its characteristics are not as well attested.Theraphosa blondi is generally thought to be the heaviest tarantula, and T. apophysis to have the greatest leg span. Two other species, Lasiodora parahybana (the Brazilian salmon birdeater) and Lasiodora klugi, rival the size of the two goliath spiders.

Most species of North American tarantulas are brown. Elsewhere species have been found that variously display cobalt blue (Haplopelma lividum), black with white stripes (Aphonopelma seemanni), yellow leg markings (Eupalaestrus campestratus), metallic blue legs with vibrant orange abdomen and greenbottle blue (Chromatopelma cyaneopubescens). Their natural habitats include savanna, grasslands such as the pampas, rainforests, deserts, scrubland, mountains, and cloud forests. They are generally classed among the terrestrial types. They are burrowers that live in the ground.

Tarantulas are becoming increasingly popular as pets and some species are readily available in captivity.


The spider originally bearing the name "tarantula" was Lycosa tarantula, a species of wolf spider native to Mediterranean Europe.[1] The name derived from that of the southern Italian town of Taranto. The term "tarantula" subsequently was applied to almost any large, unfamiliar species of ground-dwelling spider, in particular to the Mygalomorphae and especially to the new-world Theraphosidae. Compared to tarantulas, wolf spiders are not particularly large or hairy, so among English speakers in particular, the usage eventually shifted in favour of the Theraphosidae, even though they are barely related to the wolf spiders, being in a different infraorder.

New-world and other divergent usages

A tarantula next to a US size 11 shoe, to show scale

When theraphosids were encountered in the Americas, they were named "tarantulas", causing usage of the term to shift to the tropical spiders. Nevertheless, these spiders belong to the suborder Mygalomorphae, and are not closely related to wolf spiders.

The name "tarantula" is also mistakenly applied to other large-bodied spiders, including the purseweb spiders or atypical tarantulas, the funnel-webs (Dipluridae and Hexathelidae), and the "dwarf tarantulas". These spiders are related to tarantulas (all being mygalomorphs), but are classified in different families. Huntsman spiders of the family Sparassidae have also been termed "tarantulas" because of their large size. In fact, they are not related, belonging to the suborder Araneomorphae.


Tarantulas of various species occur in the southern and western parts of the United States, in Central America, and throughout South America. Other species occur variously throughout Africa, much of Asia and all of Australia. In Europe, some species occur in Spain, Portugal, Turkey, Italy, and Cyprus.


Some genera of tarantulas hunt prey primarily in trees; others hunt on or near the ground. All tarantulas can produce silk – while arboreal species will typically reside in a silken "tube tent", terrestrial species will line their burrows with silk to stabilize the burrow wall and facilitate climbing up and down. Tarantulas mainly eat insects and other arthropods, using ambush as their primary method of prey capture. The biggest tarantulas can kill animals as large as lizards, mice, birds and small snakes.


Sub-adult Female Poecilotheria regalis

The eight legs, the two chelicerae with their fangs, and the pedipalps are attached to the prosoma. The chelicerae are two double segment appendages that are located just below the eyes and directly forward of the mouth. The chelicerae contain the venom glands that vent through the fangs. The fangs are hollow extensions of the chelicerae that inject venom into prey or animals that the tarantula bites in defense, and they are also used to masticate. These fangs are articulated so that they can extend downward and outward in preparation to bite or can fold back toward the chelicerae as a pocket knife blade folds back into its handle. The chelicerae of a tarantula completely contain the venom glands and the muscles that surround them, and can cause the venom to be forcefully injected into prey.

The pedipalpi are two six-segment appendages connected to the spinnerets surrounding the genital opening. Silk for the sperm web of the tarantula is exuded from these special spinnerets.

Claws at the end of the leg of Lasiodora parahybana
Brazilian tarantula in defensively threatening position

A tarantula has four pairs of legs and two additional pairs of appendages. Each leg has seven segments which, from the prosoma out, are: coxa, trochanter, femur, patella, tibia, tarsus and pretarsus, and claw. Two or three retractable claws are at the end of each leg. These claws are used to grip surfaces for climbing. Also on the end of each leg, surrounding the claws, is a group of hairs. These hairs, called the scopula, help the tarantula to grip better when climbing surfaces like glass. The fifth pair are the pedipalps which aid in feeling, gripping prey, and mating in the case of a mature male. The sixth pair of appendages are the chelicerae and their attached fangs. When walking, a tarantula's first and third leg on one side move at the same time as the second and fourth legs on the other side of his body. The muscles in a tarantula's legs cause the legs to bend at the joints, but to extend a leg, the tarantula increases the pressure of blood entering the leg.

Tarantulas, like almost all other spiders, have their primary spinnerets at the end of the opisthosoma. Unlike most spider species in the suborder Araneomorphae, which includes the majority of extant spider species, and most of which have six, tarantula species have two or four spinnerets. Spinnerets are flexible tubelike structures from which the spider exudes its silk. The tip of each spinneret is called the spinning field. Each spinning field is covered by as many as one hundred spinning tubes through which silk is exuded. This silk hardens on contact with the air to become a threadlike substance.

Silk-producing feet

In 2006 in the Journal of Experimental Biology a paper described observations suggesting that some tarantulas have silk-producing spigots on their feet. The authors assert that these structures enabled the spiders to cling to smooth surfaces and thus avoid harmful falls. [2] In 2011, Dr. Claire Rind and her colleagues from Newcastle University conducted experiments inferring the likelihood that all tarantulas are able to produce silk from their tarsi (feet).[3] Describing her experiments in a BBC Nature report (16 May 2011), Dr. Rind includes an electron microscope image purportedly revealing microscopic silk producing structures on the spiders' feet, and noting that the three species involved in the research were very distantly related, concludes: "So it's likely that all tarantulas produce silk threads from their feet."[4]

Silk production from organs other than the spinnerets has been documented in other spiders such as from the

  • Tarantulas at DMOZ
  • Tarantulas US Forum
  • Word of the Day: Tarantula and Tarantella, etymology and folklore
  • Overview of Species Information for All Named Theraphosidae Divided by Subfamily
  • Listing of all currently named Theraphosidae
  • Care for commonly kept Tarantula Pets
  • American Tarantula Society Headquarters
  • Amazing Tarantulas
  • NMSU Entomology Plant Pathology and Weed Science. "The Spiders of the Arid Southwest". Retrieved 2013-07-15. 
  • Watch Tarantula (Theraphosidae) video clips from the BBC archive on Wildlife Finder

External links

  • S. B. Reichling & R. C. West (1996). "A new genus and species of theraphosid spider from Belize (Araneae, Theraphosidae)" (PDF). Journal of Arachnology 24: 254–261. 
  • Platnick N I (eds Merrett P and Cameron H D) Theraphosidae in: The World Spider Catalog. American Museum of Natural History, New York

Further reading

  1. ^ Fabre, Jean-Henri; Translated by Alexander Teixeira de Mattos (1916) The Life of the spider, Dodd, Mead, New York.
  2. ^ Gorb, S. N.; Niederegger, S.; Hayashi, C. Y.; Summers, A. P.; Vötsch, W.; Walther, P. (2006). "Biomaterials: Silk-like secretion from tarantula feet". Nature 443 (7110): 407.  
  3. ^ Rind, F. C.; Birkett, C. L.; Duncan, B. -J. A.; Ranken, A. J. (2011). "Tarantulas cling to smooth vertical surfaces by secreting silk from their feet". Journal of Experimental Biology 214 (11): 1874.  
  4. ^ Victoria Gill (16 May 2011). "Tarantulas eject silk from feet". BBC. Retrieved 2011-05-16. An electron microscope revealed microscopic silk producing structures on the spiders' feet. 
  5. ^ Rind, F. C.; Birkett, C. L.; Duncan, B. -J. A.; Ranken, A. J. (2011). "Tarantulas cling to smooth vertical surfaces by secreting silk from their feet". Journal of Experimental Biology 214 (11): 1874.  
  6. ^ Foelix, R. F.; Rast, B.; Peattie, A. M. (2012). "Silk secretion from tarantula feet revisited: Alleged spigots are probably chemoreceptors". Journal of Experimental Biology 215 (7): 1084.  
  7. ^ Perez-Miles, F.; Ortiz-Villatoro, D. (2012). "Tarantulas do not shoot silk from their legs: Experimental evidence in four species of New World tarantulas". Journal of Experimental Biology 215 (10): 1749.  
  8. ^ Kovařík, F (2001), Chov sklípkanů (Keeping Tarantulas); Madagaskar, Jihlava, p. 23
  9. ^ Piper, R (2007) Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press, ISBN 0313339228.
  10. ^ Murton, Willow. "Tarantula kebab anyone?". BBC Food Blog, with video from  
  11. ^ Cooke, J.A.L., Roth, V.D., Miller, F.H. (1972). "The urticating hairs of theraphosid spiders". American Museum novitates: 2498.  
  12. ^ Blaikie, Andrew J; John Ellis; Roshini Sanders; Caroline J. MacEwen (24 May 1997). "Eye disease associated with handling pet tarantulas: three case reports".  
  13. ^ Klátil, Lubomír (1998). Sklípkani: krasavci s chlupatýma nohama. Nakl. Kabourek Zlín. p. 40.  
  14. ^ Tarantula shoots sharp bristles into owner’s eye MSNBC/LiveScience
  15. ^ Huntsman Spiders at The Australian Wonder Book of Knowledge
  16. ^  
  17. ^ Gallon, R. C. (2003). "A new African arboreal genus and species of theraphosid spider (Araneae, Theraphosidae, Stromatopelminae) which lacks spermathecae". The Bulletin of the British Arachnological Society 12 (9): 405–411. 
  18. ^ Schultz, Stanley A. and Schultz, Marguerite J. (1998) The Tarantula Keeper's Guide, Barron's Educational Series, ISBN 0764100769, p. 75


See also

Although there are fossils of mygalomorph spiders going back to the Triassic, only two specimens have been found so far which can be convincingly assigned to Theraphosidae. One is from Dominican Republic amber, the other from Chiapas (Mexican) amber. Both these ambers are quite young, being Miocene in age or about 16 million years old.

Fossil record

A few genera are presently not well classified, and/or have classifications which are disputed, including Brachionopus.

  • Theraphosinae are new-world terrestrial tarantulas with urticating hairs. The majority of spiders kept as pets are of this sub-family, including Brachypelma, a genus of tropical new-world species generally considered docile and good starter species by those who keep tarantulas as pets.
  • Selenogyrinae is a subfamily of tarantulas from India and Africa.
  • Selenocosmiinae is a subfamily which consists mainly of tarantulas from East Asia and Australia. Like the East Asian tarantulas in Ornithoctoninae, these are known for their strong venom and defensive disposition. The genera Psalmopoeus and Tapinauchenius do not have urticating bristles, unusual among new-world species.
  • Harpactirinae is a group of old-world tarantulas from Africa, though smaller than Eumenophorinae. They are known as baboon spiders for their hairy legs and the thick black scorpulae at the end of their feet, which are said to resemble baboons.
  • Eumenophorinae is a subfamily of old-world tarantulas, mostly from Africa and surrounding regions. In addition, some authors place genus Proshapalopus (a genus found in Brazil, and not in Africa) in this sub-family.
  • Aviculariinae is a subfamily of tropical, tree-dwelling new-world tarantulas. They range from the Caribbean to South America, and are commonly known as "pinktoe" tarantulas. The genera Avicularia, Ephebopus, and Pachistopelma possess urticating bristles, but cannot "flick" them into the air; instead the bristles are pressed into an enemy upon contact.

The family Theraphosidae is divided into 12 subfamilies, containing over 100 genera and around 900 species between them.


Females deposit 50 to 2000 eggs, depending on the species, in a silken egg sac and guard it for 6 to 8 weeks. During this time, the female will stay very close to the egg sac and become more aggressive. Within most species, the female turns the egg sac often, which is called brooding. This keeps the eggs from deforming due to sitting too long. The young spiderlings remain in the nest for some time after hatching where they live off the remains of their yolk sac before dispersing.

As with other spiders, the mechanics of intercourse are quite different from those of mammals. Once a male spider reaches maturity and becomes motivated to mate, it will weave a web mat on a flat surface. The spider will then rub its abdomen on the surface of this mat and in so doing release a quantity of semen. It may then insert its pedipalps (short leg-like appendages between the chelicerae and front legs) into the pool of semen. The pedipalps absorb the semen and keep it viable until a mate can be found. When a male spider detects the presence of a female, the two exchange signals to establish that they are of the same species. These signals may also lull the female into a receptive state. If the female is receptive then the male approaches her and inserts his pedipalps into an opening in the lower surface of her abdomen, called the opisthosoma. After the semen has been transferred to the receptive female's body, the male will swiftly leave the scene before the female recovers her appetite. Although females may show some aggression after mating, the male rarely becomes a meal.

The molted skin of a juvenile Phormictopus cancerides cancerides (second molting)


Females will continue to molt after reaching maturity. Female specimens have been known to reach 30 to 40 years of age, and have survived on water alone for up to 2 years.[18] Grammostola rosea spiders are renowned for going for long periods without eating.

Tarantulas may live for years; most species take two to five years to reach adulthood, but some species may take up to ten years to reach full maturity. Upon reaching adulthood, males typically have but a 1- to 1.5-year period left to live and will immediately go in search of a female with which to mate. Male tarantulas rarely molt again once they reach adulthood.

Like other spiders, tarantulas have to shed their exoskeleton periodically in order to grow, a process called molting. A young tarantula may do this several times a year as a part of the maturation process, while full grown specimens will only molt once a year or less, or sooner in order to replace lost limbs or lost urticating hairs. It is clear that molting will soon occur when the exoskeleton takes on a darker shade. If a tarantula previously used its urticating hairs, the bald patch will turn from a peach color to deep blue.

The molting process

Life cycle

A juvenile male's sex can be determined by looking at a cast exuvium for exiandrous fusillae or spermathecae. Females possess spermathecae except for the species Sickius longibulbi and Encyocratella olivacea.[16][17] Ventral sexing is difficult, but, if done correctly, it can be relatively reliable. Males have much shorter lifespans than females because they die relatively soon after maturing. Few live long enough for a post-ultimate moult. It is unlikely that it happens much in natural habitats because they are vulnerable to predation, but it has happened in captivity if rarely. Most males do not live through this moult as they tend to get their emboli, mature male sexual organs on pedipalps, stuck in the moult. Most tarantula fanciers regard females as more desirable as pets due to their much longer lifespan. Wild caught tarantulas are often mature males because they wander out in the open and are more likely to be caught.

Some tarantula species exhibit pronounced sexual dimorphism. Males tend to be smaller (especially their abdomens, which can appear quite narrow) and may be dull in color when compared to their female counterparts, as in the species Haplopelma lividum. Mature male tarantulas also may have tibial hooks on their front legs, which are used to restrain the female's fangs during copulation.

Sexual dimorphism

Urticating hairs may cause medical problems for humans when they enter the eyes or the respiratory system, but unless one inhales air heavily laden with these hairs or rubs them into one's eyes, they rarely are a problem. Some individuals are unusually sensitive to skin contact with the hairs and must avoid them in cleaning cages or similar activities.

While no fatalities have been attributed to tarantula bites, sometimes spider bites are regarded as the probable source of infections. Medical advice regarding prophylaxis may be helpful in that regard. In addition, there is considerable anecdotal evidence indicating that the venoms of some old-world species can produce symptoms so severe that medical treatment would be appropriate. Medical intervention is also regarded as appropriate when symptoms such as breathing difficulty or chest pain develop, since these conditions may indicate an anaphylactic reaction. As with bee stings, allergic reactions to protein fractions may be many times more dangerous than the direct toxic effects of the venom.

Medical implications

There are dangerous spider species which are related to tarantulas and frequently confused with them. A popular urban legend maintains that deadly varieties of tarantula exist somewhere in South America. This claim is often made without identifying a particular spider, although the "banana tarantula" is sometimes named. A likely candidate for the true identity of this spider is the dangerous Brazilian wandering spider Phoneutria nigriventer, of the family Ctenidae, as it is sometimes found hiding in clusters of bananas and is one of several spiders called the "banana spider." It is not technically a tarantula but it is fairly large (4–5 inch legspan), somewhat hairy, and is highly venomous to humans. Another dangerous type of spider that has been confused with tarantulas is the Australasian funnel-web spider. The best known of these is the Sydney funnel-web spider Atrax robustus, a spider that is aggressive, highly venomous, and (prior to the development of antivenom in the 1980s) was responsible for numerous deaths in Australia. These spiders are members of the same suborder as tarantulas. Some Australians use the slang term 'triantelope' (a corruption of the incorrect term 'tarantula', which is also used) for large, hairy and harmless members of the Huntsman spider family which are often found on interior household walls and in automobiles.[15]

Old-world tarantulas (from Europe, Africa, Asia and Australia) have no urticating bristles and are more likely to attack when disturbed. Old-world tarantulas often have more potent, medically significant venom.

New-world tarantulas (those found in North and South America) are equipped with urticating hairs (technically bristles) on their abdomen, and will almost always throw these barbed bristles as a first line of defense. These bristles will irritate sensitive areas of the body and especially seem to target curious animals who may sniff these bristles into the mucous membranes of the nose. Some species have more effective urticating bristles than others. The Goliath Birdeater is one species known for its particularly irritating urticating bristles. Urticating bristles can penetrate the cornea so eye protection should be worn when handling such tarantulas.[14]

Before biting, tarantulas may signal their intention to attack by rearing up into a "threat posture", which may involve raising their prosoma and lifting their front legs into the air, spreading and extending their fangs, and (in certain species) making a loud hissing by stridulating. Their next step, short of biting, may be to slap down on the intruder with their raised front legs. If that response fails to deter the attacker, the tarantulas of the Americas may next turn away and flick urticating bristles toward the pursuing predator. The next response may be to leave the scene entirely, but, especially if there is no line of retreat, their final response may also be to whirl suddenly and bite. Some tarantulas are well known to give "dry bites," i.e., they may defensively bite some animal that intrudes on their space and threatens them, but they will not pump venom into the wound.

Though all tarantulas are venomous and some bites cause serious discomfort that might persist for several days, so far there is no record of a bite causing a human fatality. In general, the effects of the bites of all kinds of tarantula are not well known. While the bites of many species are known to be no worse than a wasp sting, accounts of bites by some species are reported to be very painful and to produce intense spasms that may recur over a period of several days; the venom by the African tarantula Pelinobius muticus also causes strong hallucinations.[13] For Poecilotheria species, researchers have described more than 20 bites with the delayed onset of severe and diffuse muscle cramps that resolved completely with the use of benzodiazepines and magnesium. In all cases, it is advisable to seek medical aid. Because other proteins are included when a toxin is injected, some individuals may suffer severe symptoms due to an allergic reaction rather than to the venom. Such allergic effects can be life-threatening.

Lasiodora parahybana, chelicerae of an adult female

Bites and urticating bristles

Some setae are used to stridulate, which makes a hissing sound. These hairs are usually found on the chelicerae. Stridulation seems to be more common in old-world species.

To predators and other kinds of enemies, these hairs can range from being lethal to simply being a deterrent. With humans, they can cause irritation to eyes, nose, and skin, and more dangerously, the lungs and airways, if inhaled. The symptoms range from species to species, from person to person, from a burning itch to a minor rash. In some cases, tarantula hairs have caused permanent damage to human eyes.[12]

Urticating hairs are usually kicked off the abdomen by the tarantula, but it is noteworthy that some may simply rub the abdomen against the target, like the Avicularia genera. These fine hairs are barbed and serve to irritate. They can be lethal to small animals such as rodents. Some people are extremely sensitive to these hairs, and develop serious itching and rashes at the site. Exposure of the eyes and respiratory system to urticating hairs should be strictly avoided. Species with urticating hairs can kick these hairs off: they are flicked into the air at a target using their back pairs of legs. Tarantulas also use these hairs for other purposes such as to mark territory or to line their shelters (the latter such practice may discourage flies from feeding on the spiderlings). Urticating hairs do not grow back, but are replaced with each moult. The intensity, amount, and flotation of the hairs depends on the species of tarantula.

Tarantulas have evolved specialized hairs to defend themselves against predators. Besides the normal "hairs" covering the body, some tarantulas also have a dense covering of irritating hairs called urticating hairs, on the opisthosoma, that they sometimes use as protection against enemies.[11] These hairs are present on New World species but not on specimens from the Old World.

Adult female Brachypelma smithi, showing a bald patch after kicking hairs off of her abdomen.

Some other arthropods, such as giant centipedes are also known to prey on tarantulas.

Humans can also be considered predators of tarantulas. In addition to more mundane cuisine, tarantulas are considered a delicacy in certain cultures (e.g. Venezuela[10] and Cambodia). They are usually roasted over an open fire to remove the hairs (described further below) and then eaten.

Regardless of their fearsome reputation, tarantulas are themselves an object of predation. The most specialized of these predators are large members of the wasp family Pompilidae such as the wasp Hemipepsis ustulata. In the Americas, these insects are termed "tarantula hawks", being parasitoids of tarantulas. The largest tarantula hawks, such as those in the genus Pepsis, will track, attack and kill large tarantulas. They use olfaction to find the lair of a tarantula. The wasp must deliver a sting to the underside of the spider's cephalothorax, exploiting the thin membrane between the basal leg segments. This paralyzes the spider and the wasp then drags it back into its burrow before depositing an egg on the prey's abdomen. The wasp then seals the spider in its burrow and flies off to search for more hosts. The wasp larva hatches and feeds on the spider's non-essential parts and, as it approaches pupation, it consumes the remainder.[9]


A tarantula’s blood is unique; an oxygen-transporting protein is present (the copper-based hemocyanin) but not enclosed in blood cells such as the erythrocytes of mammals. A tarantula’s blood is not true blood but rather a liquid called haemolymph, or hemolymph. There are at least four types of hemocytes, or hemolymph cells. The tarantula’s heart is a long slender tube that is located along the top of the opisthosoma. The heart is neurogenic as opposed to myogenic, so nerve cells instead of muscle cells initiate and coordinate the heart. The heart pumps hemolymph to all parts of the body through open passages often referred to as sinuses, and not through a circular system of blood vessels. If the exoskeleton is breached, loss of hemolymph will kill the tarantula unless the wound is small enough that the hemolymph can dry and close the wound.

Thermal image of an ectothermic tarantula on an endothermic human hand

Circulatory system

In all types of tarantula there are two sets of book lungs (breathing organs). The first pair of book lungs is located in a cavity inside the lower front part of the abdomen near where the abdomen connects to the cephalothorax and the second pair slightly farther back on the abdomen. Air enters the cavity through a tiny slit on each side of and near the front of the abdomen. Each lung consists of 15 or more thin sheets of folded tissue arranged like the pages of a book. These sheets of tissue are supplied by blood vessels. As air enters each lung, oxygen is taken into the blood stream through the blood vessels in the lungs. Needed moisture may also be absorbed from humid air by these organs.

Respiratory system

The eyes are located above the chelicerae on the forward part of the prosoma. They are small and usually set in two rows of four. Most tarantulas are not able to see much more than light, darkness, and motion. Arboreal tarantulas generally have better vision compared with terrestrial tarantulas.

Closeup of a tarantula's eye

A tarantula's central nervous system (brain) is located in the bottom of the inner pheromones.

Nervous system

The tarantula's digestive organ (stomach) is a tube that runs the length of its body. In the prosoma, this tube is wider and forms the sucking stomach. When the sucking stomach's powerful muscles contract, the stomach is increased in cross-section, creating a strong sucking action that permits the tarantula to suck its liquefied prey up through the mouth and into the intestines. Once the liquefied food enters the intestines, it is broken down into particles small enough to pass through the intestine walls into the hemolymph (blood stream) where it is distributed throughout the body. After feeding, the leftovers are formed into a small ball by the tarantula and thrown away. In a terrarium, they often put them into the same corner.[8] As these balls are perfect hosts for molds and parasites, they must be removed regularly.

The tarantula's mouth is located under its chelicerae on the lower front part of its prosoma. The mouth is a short straw-shaped opening that can only suck, meaning that anything taken into it must be in liquid form. Prey with large amounts of solid parts, such as mice, must be crushed and ground up or predigested, which is accomplished by coating the prey with digestive juices that are secreted from openings in the chelicerae.

Eye ports seen in an exuvium (moulted skin).
Tarantula food leftovers

Digestive system

[7][6].chemoreceptors two 2012 studies refute the claim, one of them proposing that the structures described as spigots are actually [5]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.