"UT1" and "UT" redirect here. For other uses of "UT1", see UT1 (disambiguation). For other uses of "UT", see UT (disambiguation).

Universal Time (UT) is a time standard based on the rotation of the Earth. It is a modern continuation of Greenwich Mean Time (GMT), i.e., the mean solar time on the Prime Meridian at Greenwich, and GMT is sometimes used loosely as a synonym for UTC. In fact, the expression "Universal Time" is ambiguous, as there are several versions of it, the most commonly used being UTC and UT1 (see below). All of these versions of UT are based on the rotation of the Earth in relation to distant celestial objects (stars and quasars), but with a scaling factor and other adjustments to make them closer to solar time.

Universal Time and standard time

Prior to the introduction of standard time, each municipality throughout the civilized world set its official clock, if it had one, according to the local position of the Sun (see solar time). This served adequately until the introduction of the steam engine, the telegraph, and rail travel, which made it possible to travel fast enough over long distances to require almost constant re-setting of timepieces as a train progressed in its daily run through several towns. Standard time, where all clocks in a large region are set to the same time, was established to solve this problem. Chronometers or telegraphy were used to synchronize these clocks.[1]

Standard time, as originally proposed by Scottish-Canadian Sir Sandford Fleming in 1879, divided the world into twenty-four time zones, each one covering 15 degrees of longitude. All clocks within each zone would be set to the same time as the others, but differed by one hour from those in the neighboring zones. The local time at the Royal Greenwich Observatory in Greenwich, England was chosen as standard at the 1884 International Meridian Conference, leading to the widespread use of Greenwich Mean Time to set local clocks. This location was chosen because by 1884 two-thirds of all nautical charts and maps already used it as their prime meridian.[2] The conference did not adopt Fleming's time zones because they were outside the purpose for which it was called, which was to choose a basis for universal time (as well as a prime meridian).

During the period between 1848 to 1972, all of the major countries adopted time zones based on the Greenwich meridian.[3]

In 1935, the term Universal Time was recommended by the International Astronomical Union as a more precise term than Greenwich Mean Time, because GMT could refer to either an astronomical day starting at noon or a civil day starting at midnight.[4] The term Greenwich Mean Time persists, however, in common usage to this day in reference to civil timekeeping.


Based on the rotation of the Earth, time can be measured by observing celestial bodies crossing the meridian every day. Astronomers found that it was more accurate to establish time by observing stars as they crossed a meridian rather than by observing the position of the Sun in the sky. Nowadays, UT in relation to International Atomic Time (TAI) is determined by Very Long Baseline Interferometry (VLBI) observations of distant quasars, a method which can determine UT1 to within 4 milliseconds.[5][6]

The rotation of the Earth and UT are monitored by the International Earth Rotation and Reference Systems Service (IERS). The International Astronomical Union also is involved in setting standards, but the final arbiter of broadcast standards is the International Telecommunication Union or ITU.[7]

The rotation of the Earth is somewhat irregular, and is very gradually slowing due to tidal acceleration. Furthermore, the length of the second was determined from observations of the Moon between 1750 and 1890. All of these factors cause the mean solar day, on the average, to be slightly longer than the nominal 86,400 SI seconds, the traditional number of seconds per day. As UT is slightly irregular in its rate, astronomers introduced Ephemeris Time, which has since been replaced by Terrestrial Time (TT). Because Universal Time is synchronous with night and day, and that more precise atomic-frequency standards drift away from this, however, UT is still used to produce a correction (called a leap second) to atomic time, in order to obtain a broadcast form of civil time that carries atomic frequency. Thus, civil broadcast standards for time and frequency usually follow TAI closely, but occasionally change discontinuously (or "leap") in order to prevent them from drifting too far from mean solar time.

Barycentric Dynamical Time (TDB), a form of atomic time, is now used in the construction of the ephemerides of the planets and other solar system objects, for two main reasons.[8] First, these ephemerides are tied to optical and radar observations of planetary motion, and the TDB time scale is fitted so that Newton's laws of motion, with corrections for general relativity, are followed. Next, the time scales based on Earth's rotation are not uniform and therefore, are not suitable for predicting the motion of bodies in our solar system.


There are several versions of Universal Time:

  • UT0 is Universal Time determined at an observatory by observing the diurnal motion of stars or extragalactic radio sources, and also from ranging observations of the Moon and artificial Earth satellites. It is uncorrected for the displacement of Earth's geographic pole from its rotational pole. This displacement, called polar motion, causes the geographic position of any place on Earth to vary by several metres, and different observatories will find a different value for UT0 at the same moment. The difference between UT0 and UT1 is on the order of a few tens of milliseconds. The designation UT0 is no longer in common use.[9]
  • UT1 is the principal form of Universal Time. While conceptually it is mean solar time at 0° longitude, precise measurements of the Sun are difficult. Hence, it is computed from observations of distant quasars using long baseline interferometry, laser ranging of the Moon and artificial satellites, as well as the determination of GPS satellite orbits. UT1 is the same everywhere on Earth, and is proportional to the rotation angle of the Earth with respect to distant quasars, specifically, the International Celestial Reference Frame (ICRF), neglecting some small adjustments. The observations allow the determination of a measure of the Earth's angle with respect to the ICRF, called the Earth Rotation Angle (ERA, which serves as a modern replacement for Greenwich Mean Sidereal Time). UT1 is required to follow the relationship
ERA = 2π(0.7790572732640 + 1.00273781191135448Tu) radians
where Tu = (Julian UT1 date - 2451545.0)[10]
  • UT1R is a smoothed version of UT1, filtering out periodic variations due to tides. It includes 62 smoothing terms, with periods ranging from 5.6 days to 18.6 years.[11]
  • UT2 is a smoothed version of UT1, filtering out periodic seasonal variations. It is mostly of historic interest and rarely used anymore. It is defined by
UT2 = UT1 + 0.022\cdot\sin(2\pi t) - 0.012\cdot\cos(2\pi t) - 0.006\cdot\sin(4\pi t) + 0.007\cdot\cos(4\pi t)\;\mbox{seconds}
where t is the time as fraction of the Besselian year.[12]
  • UT2R is a smoothed version of UT1, incorporating both the seasonal corrections of UT2 and the tidal corrections of UT1R. It is the most smoothed form of Universal Time. Its non-uniformities reveal the unpredictable components of Earth rotation due to atmospheric weather, plate tectonics and currents in the interior of the Earth.
  • UTC (Coordinated Universal Time) is an atomic timescale that approximates UT1. It is the international standard on which civil time is based. It ticks SI seconds, in step with TAI. It usually has 86,400 SI seconds per day but is kept within 0.9 seconds of UT1 by the introduction of occasional intercalary leap seconds. As of 2013, these leaps have always been positive (the days which contained a leap second were 86,401 seconds long). Whenever a level of accuracy better than one second is not required, UTC can be used as an approximation of UT1. The difference between UT1 and UTC is known as DUT1.[13]

Adoption in various countries

The table shows the dates of adoption of time zones based on the Greenwich meridian, including half-hour zones.

Year Countries [14] Year Countries Year Countries
1848 Great Britain [15] 1906 India,[16] Ceylon, Seychelles 1930 Bermuda
1879 Sweden 1907 Mauritius, Chagos 1931 Paraguay
1883 Canada, USA [17] 1908 Faroe Is., Iceland 1932 Barbados, Bolivia, Dutch East Indies
1884 Serbia 1911 France, Algeria, Tunis,[18] British West Indies 1934 Nicaragua, E. Niger
1888 Japan 1912 Portugal,[19] other French possessions, Samoa, Hawaii, Midway and Guam, Timor, Bismarck Arch., Jamaica, Bahamas Is. By 1936 Labrador, Norfolk I.
1892 Belgium, Holland,[20] S. Africa[21] 1913 British Honduras, Dahomey By 1937 Cayman Is., Curaçao, Ecuador, Newfoundland
1893 Italy, Germany, Austria-Hungary (railways) 1914 Albania, Brazil, Colombia By 1939 Fernando Po, Persia
1894 Bulgaria, Denmark, Norway, Switzerland, Romania, Turkey (railways) 1916 Greece, Ireland, Poland, Turkey 1940 Holland
1895 Australia, New Zealand, Natal 1917 Iraq, Palestine By 1940 Lord Howe I.
1896 Formosa (Taiwan) 1918 Guatemala, Panama, Gambia, Gold Coast By 1948 Aden, Ascension I., Bahrein, British Somaliland, Calcutta, Dutch Guiana, Kenya, Federated Malay States, Oman, Straits Settlements, St. Helena, Uganda, Zanzibar
1899 Puerto Rico, Philippines 1919 Latvia, Nigeria By 1953 Raratonga, South Georgia
1900 Sweden, Egypt, Alaska 1920 Argentine, Uruguay, Burma, Siam By 1954 Cook Is.
1901 Spain 1921 Finland, Estonia, Costa Rica By 1959 Maldive I. Republic
1902 Mozambique, Rhodesia 1922 Mexico By 1961 Friendly Is., Tonga Is.
1903 Ts'intao, Tientsin 1924 Java, USSR By 1962 Saudi Arabia
1904 China Coast, Korea, Manchuria, N. Borneo 1925 Cuba By 1964 Niue Is.
1905 Chile 1928 China Inland 1972 Liberia

Apart from Nepal Time Zone (+5h 45m) and Chatham Isle (+12h 45m), all countries were keeping time within an even hour or half-hour of Greenwich.

See also



  • Discusses the history of time standardization.
  • . Names have not been updated.

 This article incorporates "Federal Standard 1037C".

External links

  • by Clark Blaise: a biography of Stanford Fleming and the idea of standard time