World Library  
Flag as Inappropriate
Email this Article

Weber number

Article Id: WHEBN0002028895
Reproduction Date:

Title: Weber number  
Author: World Heritage Encyclopedia
Language: English
Subject: Morton number, Dimensionless quantity, Microdispensing, Slosh dynamics, Orr–Sommerfeld equation
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Weber number

A splash after half a brick hits the water; the image is about half a meter across. Note the freely moving airborne water droplets, a phenomenon typical of high Reynolds number flows; the intricate non-spherical shapes of the droplets show that the Weber number is high. Also note the entrained bubbles in the body of the water, and an expanding ring of disturbance propagating away from the impact site.

The Weber number (We) is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surfaces.[1] It is named after Moritz Weber (1871–1951).[2] It can be thought of as a measure of the relative importance of the fluid's inertia compared to its surface tension. The quantity is useful in analyzing thin film flows and the formation of droplets and bubbles.

Mathematical expression

The Weber number may be written as:

\mathrm{We} = \frac{\rho\,v^2\,l}{\sigma}  

where

The modified Weber number,

\mathrm{We}^*=\frac{\mathrm{We}}{12}  

equals the ratio of the kinetic energy on impact to the surface energy,

\mathrm{We}^*=\frac{E_\mathrm{kin}}{E_\mathrm{surf}},

where

E_\mathrm{kin}=\frac{\pi\rho l^3 U^2}{12}  

and

E_\mathrm{surf}=\pi l^2 \sigma.

Applications

One application of the Weber number is the study of heat pipes. When the momentum flux in the vapor core of the heat pipe is high, there is a possibility that the shear stress exerted on the liquid in the wick can be large enough to entrain droplets into the vapor flow. The Weber number is the dimensionless parameter that determines the onset of this phenomenon called the entrainment limit (Weber number greater than or equal to 1). In this case the Weber number is defined as the ratio of the momentum in the vapor layer divided by the surface tension force restraining the liquid, where the characteristic length is the surface pore size.

References

  1. ^ Arnold Frohn; Norbert Roth (27 March 2000). Dynamics of Droplets. Springer Science & Business Media. pp. 15–.  
  2. ^ Philip Day; Andreas Manz; Yonghao Zhang (28 July 2012). Microdroplet Technology: Principles and Emerging Applications in Biology and Chemistry. Springer Science & Business Media. pp. 9–.  

Further reading

  • Weast, R. Lide, D. Astle, M. Beyer, W. (1989-1990). CRC Handbook of Chemistry and Physics. 70th ed. Boca Raton, Florida: CRC Press, Inc.. F-373,376.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.