World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Inertial-range Spectrum of Whistler Turbulence : Volume 28, Issue 2 (19/02/2010)

By Narita, Y.

Click here to view

Book Id: WPLBN0003973432
Format Type: PDF Article :
File Size: Pages 5
Reproduction Date: 2015

Title: Inertial-range Spectrum of Whistler Turbulence : Volume 28, Issue 2 (19/02/2010)  
Author: Narita, Y.
Volume: Vol. 28, Issue 2
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Gary, S. P., & Narita, Y. (2010). Inertial-range Spectrum of Whistler Turbulence : Volume 28, Issue 2 (19/02/2010). Retrieved from

Description: Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany. We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.

Inertial-range spectrum of whistler turbulence

Kraichnan, R. H.: Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8, 1385–1387, 1965.; Iroshnikov, P. S.: Turbulence on a conducting fluid in a strong magnetic field, Sov. Astron., 7, 566–571, 1964.; Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J., and Robert, P.: Universality of Solar-wind turbulent spectrum from MHD to electron scales, Phys. Rev. Lett., 103, 165003, doi:10.1103/PhysRevLett.103.165003, 2009.; Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S., and Rème, H.: Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence, Phys. Rev. Lett., 94, 215002, doi:10.1103/PhysRevLett.94.215002, 2005.; Biskamp, D., Schwarz, E., and Drake, J. F.: Two-dimensional electron magnetohydrodynamic turbulence, Phys. Rev. Lett., 76, 1264–1267, 1996.; Cho, J. and Lazarian, A.: The anisotropy of electron magnetohydrodynamic turbulence, Astrophys. J., 615, L41–L44, 2004.; Cho, J. and Lazarian, A.: Simulations of electron magnetohydrodynamic turbulence, Astrophys. J., 701, 236–252, 2009.; Dastgeer, S., Das, A., Kaw, P., and Diamond, P. H.: Whistlerization and anisotropy in two-dimensional electron magnetohydrodynamic turbulence, Phys. Plasmas, 7, 571–579, 2000.; Gary, S. P., Karimabadi, H., and Roytershteyn, V. S.: Dissipation wavenumbers for turbulence in electron-positron plasmas, Astrophys. J., 701, 1695–1700, 2009.; Gurnett, D. A., Shaw, R. R., Anderson, R. R., and Kurth, W. S.: Whistlers observed by Voyager 1 – Detection of lightning on Jupiter, Geophys. Res. Lett., 6, 511–514, 1979.; Gurnett, D. A., Kurth, W. S., Cairns, I. H., and Granroth, L. J.: Whistlers in Neptune's magnetosphere – Evidence of atmospheric lightning, J. Geophys. Res., 95, 20967–20976, 1990.; Kiyani, K. H., Chapman, S. C., Khotyanintsev, Y. V., Dunlop, M. W., and Sahraoui, F.: Global scale-invariant dissipation in collisionless plasma turbulence, Phys. Rev. Lett., 103, 075006, doi:10.1103/PhysRevLett.103.075006, 2009.; Krishan, V. and Mahajan, S. M.: Magnetic fluctuations and Hal magnetohydrodynamic turbulence in the solar wind, J. Geophys. Res., 109, A11105, doi:10.1029/2004JA010496, 2004.; Lengyel-Frey, D., Hess, R. A., MacDowall, R. J., Stone, R. G., Lin, N., Balogh, A., and Forsyth, R.: Ulysses observations of whistler waves at interplanetary shocks and in the solar wind, J. Geophys. Res., 101, 27555–27564, 1996.; Leamon, R. J., Smith. C. W., Ness, N. F., Matthaeus, W. H., and Wong, H. K.: Observational constraints on the dynamics of the interplanetary magnetic field dissipation range, J. Geophys. Res., 103, 4775–4787, 1998.; Santolik, O. and Gurnett, D. A.: Propagation of auroral hiss at high altitudes, Geophys. Res. Lett., 29, 1481, doi:10.1029/2001GL013666, 2002.; Sahraoui, F., Goldstein, M. L., Robert, P., and Khotyaintsev, Y. V.: Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale Phys. Rev. Lett., 102, 231102, doi:10.1103/PhysRevLett.102.231102, 2009.; Saito, S., Gary, S. P., Li, H., and Narita, Y.: Whistler turbulence: Particle-in-cell simulations, Phys. Plasmas, 15, 102305, doi:10.1063/1.2997339, 2008.; Scarf, F. L., Taylor, W. W. L., Russell, C. T., and Brace, L. H.: Lightning on Venus - Orbiter detection of whistler signals, J. Geophys. Res., 85, 8158–8166, 1980.; Stawicki, O., Gary, S. P., and Li, H.: Solar wind magnetic fluctuation spectra: Dispersion versus damping, J. Geophys. Res., 106, 8273–8282, 2001.


Click To View

Additional Books

  • On Solar Protons and Polar Cap Absorptio... (by )
  • Vlasov Simulations of Trapping and Loss ... (by )
  • Electron Flux Enhancement in the Inner R... (by )
  • On the Motion of Dayside Auroras Caused ... (by )
  • Surface Ultraviolet Radiation Over East ... (by )
  • Cutlass/Image Observations of High-latit... (by )
  • A Brief Review on the Presentation of Cy... (by )
  • Space Weather and Space Anomalies : Volu... (by )
  • Lower Hybrid Waves at the Shock Front: a... (by )
  • Centrifugal Acceleration in the Magnetot... (by )
  • Interannual Signals in Length of Day and... (by )
  • Remote Sensing Planetary Waves in the Mi... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.