World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Different Magnetospheric Modes: Solar Wind Driving and Coupling Efficiency : Volume 27, Issue 11 (16/11/2009)

By Partamies, N.

Click here to view

Book Id: WPLBN0003975377
Format Type: PDF Article :
File Size: Pages 11
Reproduction Date: 2015

Title: Different Magnetospheric Modes: Solar Wind Driving and Coupling Efficiency : Volume 27, Issue 11 (16/11/2009)  
Author: Partamies, N.
Volume: Vol. 27, Issue 11
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Mcwilliams, K., Tanskanen, E., Mcpherron, R. L., Bryant, C. R., Thomsen, M. F., Partamies, N.,...Pulkkinen, T. I. (2009). Different Magnetospheric Modes: Solar Wind Driving and Coupling Efficiency : Volume 27, Issue 11 (16/11/2009). Retrieved from http://www.ebooklibrary.org/


Description
Description: Finnish Meteorological Institute, Helsinki, Finland. This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC) intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential), particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to) the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY). Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations) during geomagnetically active conditions.

Summary
Different magnetospheric modes: solar wind driving and coupling efficiency

Excerpt
Akasofu, S.-I.: Energy coupling between the solar wind and the magnetosphere, §SR 28, 121–190, 1981.; Belian, R. D., Gisler, G. R., Cayton, T., and Christensen, R.: High-Z Energetic Particles at Geostationary Orbit During the Great Solar Proton Event Series of October 1989, \JGR 97, 16897–16906, 1992.; Borovsky, J. E., Nemzek, R. J., and Belian, R. D.: The occurrence rate of magnetospheric substorm onsets: random and periodic substorms, \JGR 98, 3807–3813, 1993.; Borovsky, J. E. and Funsten, H. O.: Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere, \JGR 108(A6), 1246, doi:10.1029/2002JA009601, 2003.; Nevanlinna, H.: Results of the Helsinki magnetic observatory 1844–1912, Ann. Geophys., 22, 1691–1704, 2004.; DeJong, A D., Ridley, A J., Cai, X., and Clauer, C R.: A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections, \JGR 114, A08215, doi:10.1029/2008JA013870, 2009.; Frey, H U., Mende, S B., Angelopoulos, V., and Donovan, E F.: Substorm onset observations by IMAGE-FUV, \JGR 109, A10304, doi:10.1029/2004JA010607, 2004.; Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, \JGR 99, 5771–5792, 1994.; Greenwald, R. A., Baker, K. B., Dudeney, J. R., et al.: DARN/SuperDARN, A global view of the dynamics of high-latitude convection, §SR 71, 761–796, 1995.; Henderson, M. G., Reeves, G. D., Skoug, R., Thomsen, M. F., Denton, M. H., Mende, S. B., Immel, T. J., Brandt, P. C., and Singer, H. J.: Magnetospheric and auroral activity during the 18 April 2002 sawtooth event, \JGR 111, A01S90, doi:10.1029/2005JA011111, 2006.; Iyemori, T.: Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations, J. Geomag. Geoelectr., 42, 1249–1265, 1990.; Kallio, E I., Pulkkinen, T I., Koskinen, H E J., Viljanen, A., Slavin, J A., and Ogilvie, K.: Loading-unloading process in the nightside ionosphere, \GRL 27, 1627–1630, 2000.; Lui, A. T. Y, Akasofu, S.-I., Hones Jr., E. W., Bame, S. J., and McIlwain, C. E.: Observation of the plasma sheet during a contracted oval substorm in a prolonged quiet period, \JGR 81, 1415–1419, 1976.; Lyons, L R., Nagai, T., Blanchard, G T., Samson, J C., Yamamoto, T., Mukai, T., Nishida, A., and Kokubun, S.: Association between Geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers, \JGR 104, 4485–4500, 1999.; Manninen, J., Kleimenova, N G., Kozyreva, O V., Ranta, A., Kauristie, K., M�kinen, S., and Kornilova, T A.: Ground-based observations during the period between two strong November 2004 storms attributed to steady magnetospheric convection, J. Geophys. Res., 113, A00A09, doi:10.1029/2007JA012984, 2008.; McComas, D. J., Bame, S. J., Parker, P., Feldman, W. C., Phillips, J. L., Riley, P., and Griffee, J. W.: Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, §SR 86, 563–612, 1998.; McPherron, R. L., O'Brien, T. P., and Thomson, S. M.: Solar wind drivers for steady magnetospheric convection, in Multiscale Coupling of Sun-Earth Processes, 113–124, 2005.; McPherron, R. L., Kepko, L., Pulkkinen, T. I., Hsu, T. S., Weygand, J. W., and Bargatze, L. F.: Changes in the response of the AL Index with solar cycle and epoch within a corotating interaction region, Ann. Geophys., 27, 3165–3178, 2009.; McWilliams, K. A., Pfeifer, J. B., and McPherron, R. L., Steady magnetospheric convection selection criteria: Implications of global SuperDARN convection measurements, \GRL 35, L09102, doi:10.1029/2008GL033671, 2008.; O'Brien, T. P., Thompson, S. M., and McPherron R. L.: Steady magnetospheric convection: Statistical signatures in the solar wind and AE, \GRL 29(7), 1130, doi:10.1029/2001GL014641, 2002.; Partamies, N., Pulkkinen, T I., Mcpherron, R L., McWilliams, K., Bryant, C., Tanskanen, E., Singer, H J., Reeves, G D, and Thomsen, M F.: Statistical survey on saw


 

Click To View

Additional Books


  • Solar Cycle Signatures in the Ncep Equat... (by )
  • Halo-coronal Mass Ejections Near the 23R... (by )
  • Propagation Properties of Rossby Waves f... (by )
  • Mapping of the Quasi-periodic Oscillatio... (by )
  • Dynamics of Thin Current Sheets: Cluster... (by )
  • Transient Eastward-propagating Long-peri... (by )
  • Seasonal-longitudinal Variability of Equ... (by )
  • The Study of Intermolecular Energy Trans... (by )
  • Scandi – an All-sky Doppler Imager for S... (by )
  • Location Accuracy of Vlf World-wide Ligh... (by )
  • Multi-year Investigations of Aerosols fr... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.