World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

The Effect of Low Solublility Organic Acids on the Hygroscopicity of Sodium Halide Aerosols : Volume 14, Issue 4 (18/02/2014)

By Miñambres, L.

Click here to view

Book Id: WPLBN0003976369
Format Type: PDF Article :
File Size: Pages 37
Reproduction Date: 2015

Title: The Effect of Low Solublility Organic Acids on the Hygroscopicity of Sodium Halide Aerosols : Volume 14, Issue 4 (18/02/2014)  
Author: Miñambres, L.
Volume: Vol. 14, Issue 4
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Castaño, F., Sánchez, M. N., Méndez, E., Miñambres, L., & Basterretxea, F. J. (2014). The Effect of Low Solublility Organic Acids on the Hygroscopicity of Sodium Halide Aerosols : Volume 14, Issue 4 (18/02/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: Departamento de Química Física, Facultad de Ciencia y Tecnología, University of the Basque Country, UPV/EHU, Campus de Leioa, B. Sarriena, s/n, Leioa 48940, Spain. In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

Summary
The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

Excerpt
Andreae, M. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.; Andrews, E. and Larson, S. M.: Effect of surfactant layers on the size changes of aerosol-particles as a function of relative-humidity, Environ. Sci. Technol., 27, 857–865, 1993.; Baker, A. R.: Marine aerosol iodine chemistry: the importance of soluble organic iodine, Environ. Chem., 2, 295–298, 2005.; Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley-VCH, Weinheim, 2004.; Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., and Kulmala, M.: A review of natural aerosol interactions and feedbacks within the Earth system, Atmos. Chem. Phys., 10, 1701–1737, 10.5194/acp-10-1701-2010, 2010.; Chakraborty, P. and Zachariah, M. R.: Sticking coefficient and processing of water vapor on organic-coated nanoaerosols, J. Phys. Chem. A, 112, 966–972, 2008.; Cavalli, F., Facchini, M. C., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y. J., O'Dowd, C. D., Putaud, J. P., and Dell'Acqua, A.: Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic, J. Geophys. Res.-Atmos, 109, D24215, 10.1029/2004JD005137, 2004.; Chuang, P. Y.: Measurement of the timescale of hygroscopic growth for atmospheric aerosols, J. Geophys. Res.-Atmos., 108, 4282, 10.1029/2002JD002757, 2003.; Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.: Liquid–liquid phase separation in mixed organic/inorganic aerosol particles, J. Phys. Chem. A, 113, 10966–10978, 2009.; Cwiertny, D. M., Young, M. A., and Grassian, V. H.: Chemistry and photochemistry of mineral dust aerosol, Annu. Rev. Phys. Chem., 59, 27–51, 2008.; Davies, J. F., Miles, R. E., Haddrell, A. E., and Reid, J. P.: Influence of organic films on the evaporation and condensation of water in aerosol, P. Natl. Acad. Sci. USA, 110, 8807–8812, 2013.; Demou, E. and Donaldson, D. J.: Adsorption of atmospheric gases at the air–water interface. 4: The influence of salts, J. Phys. Chem. A, 106, 982–987, 2002.; Dennis-Smither, B. J., Hanford, K. L., Kwamena, N. A., Miles, R. E. H., and Reid, J. P.: Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis, J. Phys. Chem. A, 116, 6159–6168, 2012.; Donaldson, D. J. and Vaida, V.: The influence of organic films at the air–aqueous boundary on atmospheric processes, Chem. Rev., 106, 1445–1461, 2006.; Downing, H. D. and Williams, D.: Optical constants of water in the infrared, J. Geophys. Res., 80, 1656–1661, 1975.; Duce, R., Mohnen, V., Zimmerman, P., Grosjean, D., Cautreels, W., Chatfield, R., Jaenicke, R., Ogren, J., Pellizzari, E., and Wallace, G.: Organic material in the global troposphere, Rev. Geophys., 21, 921–952, 1983.; Ebben, C. J., Ault, A. P., Ruppel, M. J., Ryder, O. S., Bertram, T. H., Grassian, V. H., Prather, K. A., and Geiger, F. M.: Size-resolved sea spray aerosol particles studied by vibrational sum frequency generation, J. Phys. Chem. A, 117, 6589–6601, 2013.; Ellison, G. B., Tuck, A. F., and Vaida, V.: Atmospheric processing of organic aerosols, J. Geophys. Res.-Atmos., 104, 11633–11641, 10.1029/1999JD900073, 1999.; Finlayson-Pitts, B. J.: The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr, Chem. Rev., 103, 4801–4822, 2003.; Finlayson-Pitts, B. J.: Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chem

 

Click To View

Additional Books


  • Atmospheric Oxidation of 1,3-butadiene: ... (by )
  • Technical Note: an Empirical Algorithm E... (by )
  • Assessing the Mineral Dust Indirect Effe... (by )
  • The Transport History of Two Saharan Dus... (by )
  • Application of Wrf/Chem-madrid and Wrf/P... (by )
  • Size Distributions, Sources and Source A... (by )
  • Airborne Measurements of Nucleation Mode... (by )
  • Solar Occultation with Sciamachy: Algori... (by )
  • Analysis of Ozone and Nitric Acid in Spr... (by )
  • Aerosol Climatology: Dependence of the A... (by )
  • Comparison of Modis 3 Km and 10 Km Resol... (by )
  • Technical Note: Quantification of Interf... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.