World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Cirrus Cloud-temperature Interactions in the Tropical Tropopause Layer: a Case Study : Volume 11, Issue 5 (24/05/2011)

By Taylor, J. R.

Click here to view

Book Id: WPLBN0003976830
Format Type: PDF Article :
File Size: Pages 30
Reproduction Date: 2015

Title: Cirrus Cloud-temperature Interactions in the Tropical Tropopause Layer: a Case Study : Volume 11, Issue 5 (24/05/2011)  
Author: Taylor, J. R.
Volume: Vol. 11, Issue 5
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Taylor, J. R., Randel, W., & Jensen, E. J. (2011). Cirrus Cloud-temperature Interactions in the Tropical Tropopause Layer: a Case Study : Volume 11, Issue 5 (24/05/2011). Retrieved from

Description: National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder, CO, USA. Thin cirrus clouds in the Tropical Tropopause Layer (TTL) have important ramifications for radiative transfer, stratospheric humidity, and vertical transport. A horizontally extensive and vertically thin cirrus cloud in the TTL was detected by the Cloud Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO) on 27–29 January, 2009 in the Tropical Eastern Pacific region, distant from any regions of deep convection. These observations indicate that the cloud is close to 3000 km in length along the CALIPSO orbit track. Measurements over this three day period indicate that the cloud event extended over a region from approximately 15° S to 10° N and 90° W to 150° W and may be one of the most extensive cirrus events ever observed. Coincident temperature observations from the Constellation of Observing Satellites for Meteorology, Ionosphere, and Climate (COSMIC) suggest that the cloud formed in-situ as a result of a cold anomaly arising from a midlatitude intrusion. The event appears to last for up to 2 days and the temperature observations do not show any indication of the expected infrared heating. It is hypothesized that the cloud could be maintained by either nucleation of numerous small ice crystals that do not sediment or by multiple localized ice nucleation events driven by temperature variability at scales smaller than the overall cloud field, producing small ice-crystal sizes which have sufficiently long residence times (≈53 h) to maintain the cloud. It is possible that the residence times are augmented by vertical motion which could also act to offset the expected infrared heating. Further observations of similar events will be required in order to conclusively explain this curious cloud.

Cirrus cloud-temperature interactions in the tropical tropopause layer: a case study

Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T.-K., Yen, N. L., and Zeng, Z.:The COSMIC/FORMOSAT-3 Mission: Early Results, B. Am. Meteorol. Soc., 89, 313–333, doi:10.1175/BAMS-89-3-313, 2008.; Barnett, J. J., Hepplewhite, C. L., Osprey, S., Gille, J. C., and Khosravi, R.: Cross-validation of HIRDLS and COSMIC radio-occultation retrievals, particularly in relation to fine vertical structure, Proc. SPIE Int. Soc. Opt. Eng., 7802, doi:10.1117/12.800702, 2008.; Boehm, H. P.: A general equation for the terminal fall speed of solid hydrometeors, J. Atmos. Sci., 46(15), 2419–2427, 1989.; Boehm, M. T. and Verlinde, J.: Stratospheric influence on upper tropospheric tropical cirrus, Geophys. Res. Lett., 27(19), 3209–3212, 2000.; Bucholtz, A., Hlavka, D. L., McGill, M. J., Schmidt, K. S., Pilewskie, P., Davis, S. M., Reid, E. A., and Walker, A. L.: Directly measured heating rates of a tropical subvisible cirrus cloud, J. Geophys. Res., 115, D00J09, doi:10.1029/2009JD013128, 2010.; Comstock, J. M., Ackerman, T. P., and Mace, G. G.: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts, J. Geophys. Res., 107(D23), 4714, doi:.10.1029/2002JD002203, 2002.; Corti, T., Luo, B. P., Fu, Q., V�mel, H., and Peter, T.: The impact of cirrus clouds on tropical troposphere-to-stratosphere transport, Atmos. Chem. Phys., 6, 2539–2547, doi:10.5194/acp-6-2539-2006, 2006.; Davis, S., Hlavka, D., Jensen, E., Rosenlof, K., Yang, Q., Schmidt, S., Borrmann, S., Frey, W., Lawson, P., Voemel, H., and Bui, T. P.: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4, J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093, 2010.; Dinh, T. P., Durran, D. R., and Ackerman, T.: The maintenance of tropical tropopause layer cirrus, J. Geophys. Res., 115, D02104, doi:10.1029/2009JD012735, 2010.; Durran, D. R., Dinh, T. P., Ammerman, M., and Ackerman, T.: The mesoscale dynamics of thin tropical tropopause cirrus, J. Atmos. Sci., 66, 2859–2873, 2009.; Fu, Q., Hu, Y., and Yang, Q.: Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations, Geophys. Res. Lett., 34, L14813, doi:10.1029/2007GL030099, 2007.; Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267, 2009.; Gettelman, A., Randel, W. J., Wu, F., and Massie, S. T.: Transport of water vapor in the tropical tropopause layer, Geophys. Res. Lett., 29(01), 1009, doi:10.1029/2001GL013818, 2002.; Hartmann, D. L., Holton, J. R., and Fu, Q.: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, Geophys. Res. Lett., 28(10), 1969, doi:10.1029/2000GL012833, 2001.; Hajj, G. A., Ao, C. O., Iijima, B. A., Kuang, D., Kursinski, E. R., Mannucci, A. J., Meehan, T. K., Romans, L. J., de la Torre Juarez, M., and Yunck, T. P.: CHAMP and SAC-C atmospheric occultation results and intercomparisons, J. Geophys. Res., 109, D06109,


Click To View

Additional Books

  • Cosmic Rays, Ccn and Clouds – a Reassess... (by )
  • Inclusion of Mountain Wave-induced Cooli... (by )
  • Impact of Palmitic Acid Coating on the W... (by )
  • Online Coupled Meteorology and Chemistry... (by )
  • Cirrus, Contrails, and Ice Supersaturate... (by )
  • Atmospheric Parameters in a Subtropical ... (by )
  • Corrigendum to Aerosol Impacts on Califo... (by )
  • Technical Note: Use of a Beam Width Prob... (by )
  • Water Uptake is Independent of the Infer... (by )
  • Characteristics, Seasonality and Sources... (by )
  • Parameterization of Oceanic Whitecap Fra... (by )
  • Chemical Composition, Main Sources and T... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.