World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Rapid Shifts in South American Montane Climates Driven by PCo2 and Ice Volume Changes Over the Last Two Glacial Cycles : Volume 6, Issue 5 (08/10/2010)

By Groot, M. H. M.

Click here to view

Book Id: WPLBN0003977401
Format Type: PDF Article :
File Size: Pages 42
Reproduction Date: 2015

Title: Rapid Shifts in South American Montane Climates Driven by PCo2 and Ice Volume Changes Over the Last Two Glacial Cycles : Volume 6, Issue 5 (08/10/2010)  
Author: Groot, M. H. M.
Volume: Vol. 6, Issue 5
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Lourens, L. J., Gaviria, S., Hooghiemstra, H., González, N., Betancourt, A., Weber, S. L.,...Der Linden, M. V. (2010). Rapid Shifts in South American Montane Climates Driven by PCo2 and Ice Volume Changes Over the Last Two Glacial Cycles : Volume 6, Issue 5 (08/10/2010). Retrieved from

Description: University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands. Tropical montane biome migration patterns in the northern Andes are found to be coupled to glacial-induced mean annual temperature (MAT) changes; however, the accuracy and resolution of current records are insufficient to fully explore their magnitude and rates of change. Here we present a ~60-year resolution pollen record over the past 284 000 years from Lake Fúquene (5° N) in Colombia. This record shows rapid and extreme MAT changes at 2540 m elevation of up to 10 ± 2 °C within a few hundred of years that concur with the ~100 and 41-kyr (obliquity) paced glacial cycles and North Atlantic abrupt climatic events as documented in ice cores and marine sediments. Using transient climate modelling experiments we demonstrate that insolation-controlled ice volume and greenhouse gasses are the major forcing agents causing the orbital MAT changes, but that the model simulations significantly underestimate changes in lapse rates and local hydrology and vegetation feedbacks within the studied region due to its low spatial resolution.

Rapid shifts in South American montane climates driven by pCO2 and ice volume changes over the last two glacial cycles

Hooghiemstra, H. and Van der Hammen, T., Late Quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia, Rev. Palaeobot. Palyno., 77, 235–262, 1993.; Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: Milankovitch and Climate, understanding the response to astronomical forcing, edited by: Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., NATO Advanced Science Institute Series C 126, Reidel Publishing Company, Dordrecht/Boston/Lancaster, 1984.; Jansen, J. H. F., Van der Gaast, S. J., Koster, B., and Vaars, A. J.: CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores, Mar. Geol., 151, 143–153, 1998.; Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793–797, 2007.; Klein, A. G., Seltzer, G. O., and Isacks, B. L.: Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile, Quaternary Sci. Rev., 18, 63–84, 1999.; Landais, A., Chappellaz, J., Delmotte, M., Jouzel, J., Blunier, T., Bourg, C., Caillon, N., Cherrier, S., Malaize, B., Masson-Delmotte, V., Raynaud, D., and Schwander, J.: A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core, J. Gepphys. Res., 108(D18), 4563, doi:10.1029/2002JD003147, 2003.; Lashof, D. A.: The use of global warming potentials in the Kyoto Protocol, Climatic Change, 44, 423–425, 2000.; Lea, D. W., Pak, D. K., and Spero, H. J.: Climate impact of late Quaternary equatorial Pacific sea surface temperature variations, Science, 289, 1719–1724, 2000.; Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E.: Moisture transport across Central America as a positive feedback on abrupt climatic changes, Nature, 445, 908–911, 2007.; Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071, 2005.; Locarnini, R. A., Mishonov, A. V., Antonov, J. L., Boyer, T. P., and Garcia, H. E.: Temperature, in: World Ocean Atlas 2005, edited by: Levitus, S., US Government Printing Office, Washington, DC, 182 pp., 2006.; Martrat, B., Grimalt, J. O., Shackleton, N., De Abreu, L., Hutterli, M. A., and Stocker, T. F.: Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin, Science, 317, 502–507, 2007.; Members, E. C.: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 196–198, 2006.; Mommersteeg, H.: Vegetation development and cyclic and abrupt climatic change during the Late Quaternary, Unpublished Ph.D. thesis, University of Amsterdam, 1998.; Mudelsee, M.: TAUEST: a computer program for estimating persistence in unevenly spaced weather/climate time series, Comput. Geosci., 28, 69–72, 2002.; North GRIP ice core project members (NGRIP): High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.; Nyakairu, G. W. A. and Koeberl, C.: Variation of mineral, chemical, and rare earth element composition in size fractions of clay-rich sediment


Click To View

Additional Books

  • Oceanic Tracer and Proxy Time Scales Rev... (by )
  • Quantitative Reconstruction of East Asia... (by )
  • Carbon Isotopes Support Atlantic Meridio... (by )
  • Persistent Influence of Ice Sheet Meltin... (by )
  • Hindcasting the Continuum of Dansgaard–o... (by )
  • Exposure Dating of Late Glacial and Pre-... (by )
  • Corrigendum to the Importance of Norther... (by )
  • Deglacial Ice Sheet Meltdown: Orbital Pa... (by )
  • 10Be in Late Deglacial Climate Simulated... (by )
  • Quantification of the Greenland Ice Shee... (by )
  • Precipitation Variations of Longxi, Nort... (by )
  • Paleoclimatic Reconstructions in Western... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.