World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Seasonal Differences in Oxygenated Organic Aerosol Composition: Implications for Emissions Sources and Factor Analysis : Volume 15, Issue 12 (29/06/2015)

By Canonaco, F.

Click here to view

Book Id: WPLBN0003977542
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Seasonal Differences in Oxygenated Organic Aerosol Composition: Implications for Emissions Sources and Factor Analysis : Volume 15, Issue 12 (29/06/2015)  
Author: Canonaco, F.
Volume: Vol. 15, Issue 12
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

H. Prévô, A. S., Baltensperger, U., Slowik, J. G., & Canonaco, F. (2015). Seasonal Differences in Oxygenated Organic Aerosol Composition: Implications for Emissions Sources and Factor Analysis : Volume 15, Issue 12 (29/06/2015). Retrieved from

Description: Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland. Aerosol chemical speciation monitor (ACSM) measurements were performed in Zurich, Switzerland, for 13 months (February 2011 through February 2012). Many previous studies using this or related instruments have utilized the fraction of organic mass measured at m/z 44 (f44), which is typically dominated by the CO2+ ion and related to oxygenation, as an indicator of atmospheric aging. The current study demonstrates that during summer afternoons, when photochemical processes are most vigorous as indicated by high oxidant – OX (O3 + NO2), f44 for ambient secondary organic aerosol (SOA) is not higher but is rather similar or lower than on days with low OX. On the other hand, f43 (less oxidized fragment) tends to increase. These changes are discussed in the f44 / f43 space frequently used to interpret ACSM and aerosol mass spectrometer (AMS) data. This is likely due to the formation of semi-volatile oxygenated aerosol produced from biogenic precursor gases, whose emissions increase with ambient temperature.

In addition, source apportionment analyses conducted on winter and summer data using positive matrix factorization (PMF) yield semi-volatile oxygenated organic aerosol (SV-OOA) factors that retain source-related chemical information. Winter SV-OOA is highly influenced by biomass burning, whereas summer SV-OOA is to a high degree produced from biogenic precursor gases. These sources contribute to substantial differences between the winter and summer f44 / f43 data, suggesting that PMF analysis of multi-season data employing only two OOA factors cannot capture the seasonal variability of OOA.

Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis

Alfarra, M. R., Prévôt, A. S. H., Szidat, S., Sandradewi, J., Weimer, S., Lanz, V. A., Schreiber, D., Mohr, M., and Baltensperger, U.: Identification of the mass spectral signature of organic aerosols from wood burning emissions, Environ. Sci. Technol., 41, 5770–5777, 2007.; Alfarra, M. R., Hamilton, J. F., Wyche, K. P., Good, N., Ward, M. W., Carr, T., Barley, M. H., Monks, P. S., Jenkin, M. E., Lewis, A. C., and McFiggans, G. B.: The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of β-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 12, 6417–6436, doi:10.5194/acp-12-6417-2012, 2012.; Alghamdi, M. A., Khoder, M., Harrison, R. M., Hyvarinen, A. P., Hussein, T., Al-Jeelani, H., Abdelmaksoud, A. S., Goknil, M. H., Shabbaj, I. I., Almehmadi, F. M., Lihavainen, H., Kulmala, M., and Hameri, K.: Temporal variations of O-3 and NOx in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia, Atmos. Environ., 94, 205–214, 2014.; Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysis, J. Geophys. Res.-Atmos., 108, 4090, doi:10.1029/2002JD002358, 2003.; Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, 2004.; Barmpadimos, I., Hueglin, C., Keller, J., Henne, S., and Prévôt, A. S. H.: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008, Atmos. Chem. Phys., 11, 1813–1835, doi:10.5194/acp-11-1813-2011, 2011.; Barmpadimos, I., Keller, J., Oderbolz, D., Hueglin, C., and Prévôt, A. S. H.: One decade of parallel fine (PM2.5) and coarse (PM10–PM2.5) particulate matter measurements in Europe: trends and variability, Atmos. Chem. Phys., 12, 3189–3203, doi:10.5194/acp-12-3189-2012, 2012.; Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the Aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185–222, 2007.; Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, doi:10.5194/amt-6-3649-2013, 2013.; Canonaco, F., Dällenbach, K., ElHaddad, I., Crippa, M., Bozzetti, C., Huang, R.-J., Slowik, J., Baltensperger, U., Hüglin, C., Herich, H., and Prévôt, A. S. H.: A novel strategy for the source apportionment of long-term ACSM data based on ME-2 with SoFi: Automatic Rolling SoFi (AuRo-SoFi), in preparation, 2015.; Chhabra, P. S., Ng, N. L., Canagaratna, M. R., Corrigan, A. L., Russell, L. M., Worsnop, D. R., Flagan, R. C., and Seinfeld, J. H.: Elemental composition and oxidation of chamber organic aerosol, Atmos. Chem. Phys., 11, 8827–8845, doi:10.5194/acp-11-88


Click To View

Additional Books

  • Do Supersonic Aircraft Avoid Contrails? ... (by )
  • Impact of Pollution Controls in Beijing ... (by )
  • Response of Acid Mobilization of Iron-co... (by )
  • A Meteorological Overview of the Milagro... (by )
  • Chemical Climatology of the Southeastern... (by )
  • Corrigendum to Lightning-produced No2 Ob... (by )
  • Evaluation of a New Middle-lower Troposp... (by )
  • Stratospheric Variability and Trends in ... (by )
  • Free Amino Acids in Antarctic Aerosol: P... (by )
  • Relationships Among Brewer-dobson Circul... (by )
  • Stable Water Isotopologue Ratios in Fog ... (by )
  • Performance of the Meteorological Radiat... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.