World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the Dmrt-ml Model : Volume 6, Issue 4 (26/07/2013)

By Picard, G.

Click here to view

Book Id: WPLBN0003977924
Format Type: PDF Article :
File Size: Pages 18
Reproduction Date: 2015

Title: Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the Dmrt-ml Model : Volume 6, Issue 4 (26/07/2013)  
Author: Picard, G.
Volume: Vol. 6, Issue 4
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Brucker, L., Dupont, F., Roy, A., Royer, A., Harlow, C., Fily, M., & Picard, G. (2013). Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the Dmrt-ml Model : Volume 6, Issue 4 (26/07/2013). Retrieved from http://www.ebooklibrary.org/


Description
Description: CNRS, LGGE UMR5183, 38041 Grenoble, France. DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1–200 GHz similar to those acquired routinely by space-based microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large ice-sheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.

Summary
Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model

Excerpt
Abdalati, W. and Steffen, K.: Snowmelt on the Greenland Ice Sheet as Derived from Passive Microwave Satellite Data, J. Climate, 10, 165–175, 1997.; Abdalati, W. and Steffen, K.: Accumulation and hoar effects on microwave emission on the Greenland ice sheet dry snow zones, J. Glaciol., 44, 523–531, 1998.; Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.: LAPACK Users' Guide, 3rd Edn., Soc. Industrial Appl. Math., Philadelphia, PA, 1999.; Chandrasekhar, S.: Radiative transfer, New York: Dover, 1960.; Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J., Lefebvre, E., Fily, M., and Barnola, J.: Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation, J. Glaciol., 57, 17–29, doi:10.3189/002214311795306664, 2011.; Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111, 10 pp., doi:10.1029/2004JD005667, 2006.; Borghese, F., Denti, P., and Saija, R.: Scattering from model nonspherical particles theory and applications to environmental physics, Springer, Berlin, New York, available at: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=255898, 2007.; Brandt, R. E. and Warren, S. G.: Solar-heating rates and temperature profiles in Antarctic snow and ice, J. Glaciol., 39, 99–110, 1993.; Brogioni, M., Macelloni, G., Palchetti, E., Paloscia, S., Pampaloni, P., Pettinato, S., Santi, E., Cagnati, A., and Crepaz, A.: Monitoring Snow Characteristics With Ground-Based Multifrequency Microwave Radiometry, IEEE T. Geosci. Remote, 47, 3643–3655, doi:10.1109/TGRS.2009.2030791, 2009.; Brucker, L. and Markus, T.: Arctic-Scale Assessment of Satellite Passive Microwave Derived Snow Depth on Sea Ice using Operation IceBridge Airborne Data, J. Geophys. Res. Oceans, 118, 14 pp., doi:10.1002/jgrc.20228, 2013.; Brucker, L., Picard, G., and Fily, M.: Snow grain size profiles deduced from microwave snow emissivities in Antarctica, J. Glaciol., 56, 514–526, doi:10.3189/002214310792447806, 2010.; Brucker, L., Picard, G., Arnaud, L., Barnola, J., Schneebeli, M., Brunjail, H., Lefebvre, E., and Fily, M.: Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciol., 57, 171–182, 2011a.; Brucker, L., Royer, A., Picard, G., Langlois, A., and Fily, M.: Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution emission model, Remote Sens. Environ., 115, 1966–1977, doi:10.1016/j.rse.2011.03.019, 2011b.; Butt, M. J. and Kelly, R. E. J.: Estimation of snow depth in the UK using the HUT snow emission model, Int. J. Remote Sens., 29, 4249–4267, doi:10.1080/01431160801891754, 2008.; Cavalieri, D., Markus, T., Ivanoff, A., Miller, J., Brucker, L., Sturm, M., Maslanik, J., Heinrichs, J., Gasiewski, A., Leuschen, C., Krabill, W., and Sonntag, J.: A Comparison of Snow Depth on Sea Ice Retrievals Using Airborne Altimeters and an AMSR-E Simulator, IEEE T. Geosci. Remote, 50, 3027–3040, doi:10.110

 

Click To View

Additional Books


  • The Joint Uk Land Environment Simulator ... (by )
  • Assimilation of Surface No2 and O3 Obser... (by )
  • The Nexus Land-use Model Version 1.0, an... (by )
  • Application of a Global Nonhydrostatic M... (by )
  • Three-dimensional Visualization of Ensem... (by )
  • The Meteorology-chemistry Interface Proc... (by )
  • Limiting the Parameter Space in the Carb... (by )
  • Made-in: a New Aerosol Microphysics Subm... (by )
  • Review of Effective Emissions Modeling a... (by )
  • Libmpdata++ 0.1: a Library of Parallel M... (by )
  • Libcloudph++ 0.2: Single-moment Bulk, Do... (by )
  • Using the Um Dynamical Cores to Reproduc... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.