World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

A New Formulation of Equivalent Effective Stratospheric Chlorine (Eesc) : Volume 7, Issue 17 (03/09/2007)

By Newman, P. A.

Click here to view

Book Id: WPLBN0003979922
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: A New Formulation of Equivalent Effective Stratospheric Chlorine (Eesc) : Volume 7, Issue 17 (03/09/2007)  
Author: Newman, P. A.
Volume: Vol. 7, Issue 17
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Nash, E. R., Waugh, D. W., Newman, P. A., & Daniel, J. S. (2007). A New Formulation of Equivalent Effective Stratospheric Chlorine (Eesc) : Volume 7, Issue 17 (03/09/2007). Retrieved from

Description: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, MD, USA. Equivalent effective stratospheric chlorine (EESC) is a convenient parameter to quantify the effects of halogens (chlorine and bromine) on ozone depletion in the stratosphere. We show, discuss, and analyze a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This EESC can be more appropriately applied to various parts of the stratosphere because of this dependence on mean age-of-air. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. In this paper, we first provide a detailed description of the EESC calculation. We then use this EESC formulation to estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties and possible problems in the estimated times of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air and fractional release values, and the assumption that these quantities are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be significantly accelerated.

A new formulation of equivalent effective stratospheric chlorine (EESC)

Anderson, J., Russell III, J M., Solomon, S., and Deaver, L E.: Halogen Occultation Experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol, J. Geophys. Res., 103(D4), 4483–4490, doi:10.1029/1999JD901075, 2000.; Andrews, A E., Boering, K A., Daube, B C., Wofsy, S C., Loewenstein, M., Jost, H., Podolske, J R., Webster, C R., Herman, R L., Scott, D C., Flesch, G J., Moyer, E J., Elkins, J W., Dutton, G S., Hurst, D F., Moore, F L., Ray, E A., Romashkin, P A., and Strahan, S E.: Mean ages of stratospheric air derived from in situ observations of \chemCO_2, \chemCH_4, and \chemN_2O, J. Geophys. Res., 106(D23), 32 295–32 314, doi:10.1029/2001JD000465, 2001.; Austin, J. and Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, doi:10.1029/2006GL026867, 2006.; Bodeker, G E., Waugh, D W., Akiyoshi,, H., Braesicke, P., Eyring, V., Fahey, D W., Manzini, E., Newchurch, M J., Portmann, R W., Robock, A., Shine, K P., Steinbrecht, W., and Weatherhead. E C.: The ozone layer in the 21$^\mathrmst$ Century, Chapter 6 in World Meteorological Organization: Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, Geneva, 43~pp., 2007.; Chipperfield, M P., Randel, W J., Bodeker, G E., Dameris, M., Fioletov, V E., Friedl, R R., Harris, N R P., Logan. J A., McPeters, R D., Muthama, N J., Peter, T., Shepherd, T G., Shine, K~.P., Solomon, S., Thomason, L W., and Zawodny, J M.: Global ozone: Past and future, Chapter 4 in World Meteorological Organization: Scientific assessment of ozone depletion: 2002, Global Ozone Research and Monitoring Project – Report No. 47, Geneva, 91~pp., 2003.; Clerbaux, C., Cunnold, D M., Anderson, J., Engel, A., Fraser, P J., Mahieu, E., Manning, A., Miller, J., Montzka, S A., Nassar, R., Prinn, R., Reimann, S., Rinsland, C P., Simmonds, P., Verdonik, D., Weiss, R., Wuebbles, D., and Yokouchi, Y.: Long-lived Compounds, Chapter 1 in World Meteorological Organization: Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, Geneva, 63~pp., 2007.; Daniel, J S., Solomon, S., and Albritton, D L.: On the evaluation of halocarbon radiative forcing and global warming potentials, J. Geophys. Res., 100(D1), 1271–1285, doi:10.1029/94JD02516, 1995.; Daniel, J S., Solomon, S., Portmann, R W., and Garcia, R R.: Stratospheric ozone destruction: The importance of bromine relative to chlorine, J. Geophys. Res., 104(D19), 23 871–23 880, doi:10.1029/1999JD900381, 1999.; Daniel, J S., Velders, G J M., Douglass, A R., Forster, P M D., Hauglustaine, D A., Isaksen, I S A., Kuijpers, L J M., McCulloch, A., and Wallington, T J.: Halocarbon scenarios, ozone depletion potentials, and global warming potentials, Chapter 8 in World Meteorological Organization: Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, Geneva, 39~pp., 2007.; Danilin, M Y., Sze, N.-D., Ko, M K., Rodriguez, J M., and Prather, M J.: Bromine-chlorine coupling in the Antarctic ozone hole, Geophys. Res. Lett., 23(2), 153–156, doi:10.1029/95GL03783, 1996.; Dhomse, S., Weber, M., Wohltmann, I., Rex, M., and Burrows, J P.: On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003, Atmos. Chem. Phys., 6, 1165–1180, 2006.; Dorf, M., Bösch, H. Butz, A., Camy-Peyret, C., Chipperfield, M P., Engel, A., Goutail, F., Grunow, K., Hendrick, F., Hrechanyy, S., Naujokat, B., Pommereau, J.-P., Van Roozendael, M., Sioris, C., Stroh, F., Weidner, F., and Pfeilsticker, K.: Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles, Atmos. Chem. Phys., 6, 2483–2501, 2006.; Far


Click To View

Additional Books

  • Emission and Chemistry of Organic Carbon... (by )
  • Relating Observations of Contrail Persis... (by )
  • Long-term Halocarbon Observations from a... (by )
  • A Discussion on the Determination of Atm... (by )
  • Field Measurements of Hygroscopic Proper... (by )
  • Trace Gas Measurements from Infrared Sat... (by )
  • Determination of the Biogenic Secondary ... (by )
  • A Mechanism for Biologically-induced Iod... (by )
  • Quantifying the Contributions of Natural... (by )
  • Inverse Modelling-based Reconstruction o... (by )
  • Eddy Covariance Measurements and Paramet... (by )
  • Characterization of Iron Speciation in S... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.