World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Atmospheric Oxidation of Isoprene and 1,3-butadiene: Influence of Aerosol Acidity and Relative Humidity on Secondary Organic Aerosol : Volume 14, Issue 21 (27/11/2014)

By Lewandowski, M.

Click here to view

Book Id: WPLBN0003980904
Format Type: PDF Article :
File Size: Pages 30
Reproduction Date: 2015

Title: Atmospheric Oxidation of Isoprene and 1,3-butadiene: Influence of Aerosol Acidity and Relative Humidity on Secondary Organic Aerosol : Volume 14, Issue 21 (27/11/2014)  
Author: Lewandowski, M.
Volume: Vol. 14, Issue 21
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Krug, J. D., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., & Lewandowski, M. (2014). Atmospheric Oxidation of Isoprene and 1,3-butadiene: Influence of Aerosol Acidity and Relative Humidity on Secondary Organic Aerosol : Volume 14, Issue 21 (27/11/2014). Retrieved from

Description: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA. The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA) have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air sample volume) and the percent change of secondary organic carbon (SOC). The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, as well as extending the previous analysis of isoprene.

The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m−3 increase in H+ was approximately a factor of three less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m−3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

Acquavella, J. F.: Butadiene epidemiology: a summary of results and outstanding issues, Toxicology, 113, 148–156, 1996.; Angove, D. E., Fookes, C. J. R., Hynes, R. G., Walters, C. K., and Azzi, M.: The characterisation of secondary organic aerosol formed during the photodecomposition of 1,3-butadiene in air containing nitric oxide, Atmos. Environ., 40, 4597–4607, 2006.; Anttinen-Klemetti, T., Vaaranrinta, R., Mutanen, P., and Peltonen, K.: Inhalation exposure to 1,3-butadiene and styrene in styrene-butadiene copolymer production, Int. J. Hyg. Envir. Heal., 209, 151–158, 2006.; Birch, M. E. and Cary, R. A.: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol Sci. Tech., 24, 221–241, 1996.; Chan, M. N., Surratt, J. D., Chan, A. W. H., Schilling, K., Offenberg, J. H., Lewandowski, M., Edney, E. O., Kleindienst, T. E., Jaoui, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M., and Seinfeld, J. H.: Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene, Atmos. Chem. Phys., 11, 1735–1751, doi:<a href=>10.5194/acp-11-1735-2011, 2011.; Dollard, G. J., Dore, C. J., and Jenkin, M. E.: Ambient concentrations of 1,3-butadiene in the UK, Chem. Biol. Interact., 135, 177–206, 2001.; Eatough, D. J., Hansen, L. D., and Lewis, E. A.: The chemical characterization of environmental tobacco smoke, Environ. Technol., 11, 1071–1085, 1990.; Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, W., and Claeys, M.: Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States, Atmos. Environ., 39, 5281–5289, 2005.; Hurst, H. E.: Toxicology of 1,3-butadiene, chloroprene, and isoprene, Rev. Environ. Contam. T., 189, 131–179, 2007.; Froyd, K. D., Murphy, S. M., Murphy, D. M., de Gouw, J. A., Eddingsaas, N. C., and Wennberg, P. O.: Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass, P. Natl. Acad. Sci. USA, 107, 21360–21365, 2010.; Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C. Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, 1995.; Iinuma, Y., Böge, O., Gnauk, T., and Herrmann, H.: Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products, Atmos. Environ., 38, 761–773, 2004.; Jang, M. S., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric aerosol production by acid catalyzed particle-phase reactions, Science, 298, 814–817, 2002.; Jaoui, M., Edney, E. O., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Surratt, J. D., and Seinfeld, J. H.: Formation of SOA from irradiated mixtures of isoprene, α-pinene, or toluene in the presence of NOx and sulfur dioxide, J. Geophys. Res., 113, D09303, <a href=>doi:10.1029/2007JD009426, 2008.; Jaoui, M., Lewandowski, M., Docherty, K., Offenberg, J. H., and Kleindienst, T. E.: Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implication for PM2.5, Atmos. Chem. Phys. Discuss., 14, 14245–14290, doi:<a href=>10.5194/acpd-14-14245-2014, 2014.; Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M.: Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presenc


Click To View

Additional Books

  • Predicting Diurnal Variability of Fine I... (by )
  • Rapid Convective Outflow from the U.S. t... (by )
  • Will the Role of Intercontinental Transp... (by )
  • Using Surface Remote Sensors to Derive M... (by )
  • Model Study of the Cross-tropopause Tran... (by )
  • Estimating Surface Fluxes Using Eddy Cov... (by )
  • Effect of the Summer Monsoon on Aerosols... (by )
  • Corrigendum to Spectro-microscopic Measu... (by )
  • Implementation of a Markov Chain Monte C... (by )
  • The Impact of Transport Across the Polar... (by )
  • High-ozone Layers in the Middle and Uppe... (by )
  • One Year of 222Rn Concentration in the A... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.