World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Remote Sensing of Local Structure of the Quasi-perpendicular Earth's Bow Shock by Using Field-aligned Beams : Volume 27, Issue 3 (02/03/2009)

By Miao, B.

Click here to view

Book Id: WPLBN0003981952
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Remote Sensing of Local Structure of the Quasi-perpendicular Earth's Bow Shock by Using Field-aligned Beams : Volume 27, Issue 3 (02/03/2009)  
Author: Miao, B.
Volume: Vol. 27, Issue 3
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Möbius, E., Kucharek, H., Liu, Y. C., Miao, B., Matsui, H., Mouikis, C., & Lucek, E. A. (2009). Remote Sensing of Local Structure of the Quasi-perpendicular Earth's Bow Shock by Using Field-aligned Beams : Volume 27, Issue 3 (02/03/2009). Retrieved from

Description: Dept. of Physics and Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH, USA. Field-aligned ion beams (FABs) originate at the quasi-perpendicular Earth's bow shock and constitute an important ion population in the foreshock region. The bulk velocity of these FABs depends significantly on the shock normal angle, which is the angle between shock normal and upstream interplanetary magnetic field (IMF). This dependency may therefore be taken as an indicator of the local structure of the shock. Applying the direct reflection model to Cluster measurements, we have developed a method that uses proton FABs in the foreshock region for remote sensing of the local shock structure. The comparison of the model results with the multi-spacecraft observations of FAB events shows very good agreement in terms of wave amplitude and frequency of surface waves at the shock front.

Remote sensing of local structure of the quasi-perpendicular Earth's bow shock by using field-aligned beams

Asbridge, J. R., Bame, S. J., and Strong, I. B.: Outward flow of protons from the Earth's bow shock, J. Geophys. Res. 73(12), 5777–5782, 1968.; Bale, S. D., Mozer, F. S., and Horbury, T. S.: Density-Transition Scale at Quasiperpendicular Collisionless Shocks, Phys. Rev. Lett., 91, 265004, doi:10.1103/PhysRevLett.91.265004, 2003.; Bale, S. D., Balikhin, M. A., Horbury, T. S., Krasnoselskikh, V. V., Kucharek, H., Möbius, E., Walker, S. N., Balogh, A., Burgess, D., Lembège, B., Lucek, E. A., Scholer, M., Schwartz, S. J., and Thomsen, M. F.: Quasi-perpendicular Shock Structure and Processes, Space Sci. Rev., 118, 1–4, 161, doi:10.1007/s11214-005-3827-0, 2005.; Bevington, P., Robinson, D., Bruflodt, D., and Cotkin, S. (Eds.): Data Reduction and Error Analysis, McGraw-Hill, Kent A. Peterson, USA, 2003.; Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, 2001.; Burgess, D. and Scholer, M.: Shock front instability associated with reflected ions at the perpendicular shock, Phys. Plasmas, 14, 012108, doi:10.1063/1.2435317, 2007.; Gosling, J. T., Asbridge, J. R., Bame, S. J., Paschmann, G., and Sckopke, N.: Observations of two distinct populations of bow shock ions in the upstream solar wind, Geophys. Res. Lett., 5, 957–960, 1978.; de Hoffmann, F. and Teller, E.: Magneto-Hydrodynamic Shocks, Phys. Rev., 80, 692–703, 1950.; Haaland, S. E., Sonnerup, B. U. Ö., Dunlop, M. W., Balogh, A., Georgescu, E., Hasegawa, H., Klecker, B., Paschmann, G., Puhl-Quinn, P., Rème, H., Vaith, H., and Vaivads, A.: Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods, Ann. Geophys., 22, 1347–1365, 2004.; Hada, T., Oonishi, M., Lembège, B., and Savoini, P.: Shock front nonstationarity of supercritical perpendicular shocks, J. Geophys. Res., 108(A6), 1233, doi:10.1029/2002JA009339, 2003.; Harvey, C. C.: Spatial gradients and the volumetric tensor, in: Multi-Spacecraft Analysis, Chap. 12, ISSI, edited by: Paschmann, G. and Daly, P., 307–348, 1998.; Horbury, T. S., Cargill, P. J., Lucek, E. A., Eastwood, J., Balogh, A., Dunlop, M. W., Fornacon, K.-H., and Georgescu, E.: Four spacecraft measurements of the quasiperpendicular terrestrial bow shock: Orientation and motion, J. Geophys. Res., 107, 1208–1219, doi:10.1029/2001JA000273, 2002.; Kucharek, H., Möbius, E., Scholer, M., Mouikis, C., Kistler, L. M., Horbury, T., Balogh, A., Rème, H., and Bosqued, J. M.: On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster, Ann. Geophys., 22, 2301–2308, 2004.; Lin, R. P., Meng, C. I., and Anderson, K. A.: 30–100 keV protons upstream from the Earth bow shock, J. Geophys. Res., 79, 489–498, 1974.; Lembège, B. and Savoini, P.: Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation. Phys. Fluids, B, 4, 3533–3548, 1992.; Lobzin, V. V., Krasnoselskikh, V. V., Bosqued, J.-M., Pin\c con, J.-M., and Schwartz, S. J.: Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations, Geophys. Res. Lett., 34, L05107, doi:10.1029/2006GL029095, 2007.; Lowe, R. E. and Burgess, D.: The properties and causes of rippling in quasi-perpendicular collisionless shock fronts, Ann. Geophys., 21, 671–679, 2003.; Meziane, K., Wilber, M., Hamza, A. M., Mazelle, C., and Parks, G. K.: Evidence for a high-energy tail associated with foreshock field-aligned beams, J. Geophys. Res., 112, A01101, doi:10.1029/2006JA011751, 2007.; Moullard, O., Burgess, D., Horbury, T. S., and Lucek, E. A.: Ripples observed on the surface of the Earth's quasi-perpendicular bow shock, J. Geophys. Res., 111, A09113, doi:10.1029/2005JA011594


Click To View

Additional Books

  • Plasma Depletion Layer: the Role of the ... (by )
  • Counter Electrojet Features in the Brazi... (by )
  • New Insights from a Nonlocal Generalizat... (by )
  • On Multifractality of High-latitude Geom... (by )
  • Quantifying the Effect of Magnetopause S... (by )
  • Effect of Solar Cycle on Topside Ion Tem... (by )
  • Magnetic Local Time, Substorm, and Parti... (by )
  • Mapping of Coma Anisotropies to Plasma S... (by )
  • Travelling Ionospheric Disturbance Prope... (by )
  • The Red-sky Enigma Over Svalbard in Dece... (by )
  • Transport of Potential Vorticity and Eli... (by )
  • Giant Disturbance in the Ionospheric F2 ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.