World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Cluster-c1 Observations on the Geometrical Structure of Linear Magnetic Holes in the Solar Wind at 1 Au : Volume 28, Issue 9 (20/09/2010)

By Xiao, T.

Click here to view

Book Id: WPLBN0003983537
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Cluster-c1 Observations on the Geometrical Structure of Linear Magnetic Holes in the Solar Wind at 1 Au : Volume 28, Issue 9 (20/09/2010)  
Author: Xiao, T.
Volume: Vol. 28, Issue 9
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Zong, Q. G., Shi, Q. Q., Xiao, T., Zhang, T. L., Fu, S. Y., Pu, Z. Y.,...Sun, W. J. (2010). Cluster-c1 Observations on the Geometrical Structure of Linear Magnetic Holes in the Solar Wind at 1 Au : Volume 28, Issue 9 (20/09/2010). Retrieved from

Description: School of Space Science and Physics, Shandong University at Weihai, Weihai, China. Interplanetary linear magnetic holes (LMHs) are structures in which the magnetic field magnitude decreases with little change in the field direction. They are a 10–30% subset of all interplanetary magnetic holes (MHs). Using magnetic field and plasma measurements obtained by Cluster-C1, we surveyed the LMHs in the solar wind at 1 AU. In total 567 interplanetary LMHs are identified from the magnetic field data when Cluster-C1 was in the solar wind from 2001 to 2004. We studied the relationship between the durations and the magnetic field orientations, as well as that of the scales and the field orientations of LMHs in the solar wind. It is found that the geometrical structure of the LMHs in the solar wind at 1 AU is consistent with rotational ellipsoid and the ratio of scales along and across the magnetic field is about 1.93:1. In other words, the structure is elongated along the magnetic field at 1 AU. The occurrence rate of LMHs in the solar wind at 1 AU is about 3.7 per day. It is shown that not only the occurrence rate but also the geometrical shape of interplanetary LMHs has no significant change from 0.72 AU to 1 AU in comparison with previous studies. It is thus inferred that most of interplanetary LMHs observed at 1 AU are formed and fully developed before 0.72 AU. The present results help us to study the formation mechanism of the LMHs in the solar wind.

Cluster-C1 observations on the geometrical structure of linear magnetic holes in the solar wind at 1 AU

Balikhin, M. A., Sagdeev, R. Z., Walker, S. N., Pokhotelov, O. A., Sibeck, D. G., Beloff, N., and Dudnikova, G.: THEMIS observations of mirror structures: Magnetic holes and instability threshold, Geophys. Res. Lett., 36, L03105, doi:10.1029/2008GL036923, 2009.; Balogh, A., Dougherty, M. K., Forsyth, R. J., Southwood, D. J., Smith, E. J., Tsurutani, B. T., Murphy, N., and Burton, M. E.: Magnetic field observations in the vicinity of Jupiter during the Ulysses flyby, Science, 257, p. 1515, 1992.; Baumgärtel, K.: Soliton approach to magnetic holes, J. Geophys. Res., 104, 28295–28308, 1999.; Baumjohann, W., Treumann, R. A., Georgescu, E., Haerendel, G., Fornacon, K.-H., and Auster, U.: Waveform and packet structure of lion roars, Ann. Geophys., 17, 1528–1534, doi:10.1007/s00585-999-1528-9, 1999.; Buti, B., Tsurutani, B. T., Neugebauer, M., and Goldstein, B. E.: Generation Mechanism for Magnetic Holes in the Solar Wind, Geophys. Res. Lett., 28, 1355–1358, 2001.; Bavassano Cattaneo, M. B., Basile, C., Moreno, G., and Richardson, J. D.: Evolution of mirrorstructures in the magnetosheath of Saturn from the bow shock to the magnetopause, J. Geophys. Res., 103, 11961–11972, 1998.; Chandrasekhar, S. A., Kaufman, A. N., and Watson, K. M.: The stability of the pinch, P. Roy. Soc. Lond. A, 245, p. 435, doi:10.1098/rspa.1958.0094, 1958.; Fitzenreiter, R. J. and Burlaga, L. F.: Structure of current sheets in magnetic holes at 1 AU, J. Geophys. Res., 83, 5579, doi:10.1029/JA083iA12p05579, 1978.; Hasegawa, A.: Drift mirror instability in the magnetosphere, Phys. Fluids, 12, 2642, doi:10.1063/1.1692407, 1969.; Hasegawa, A.: Plasma Instabilities and Nonlinear Effects, Springer-Verla, New York, 94 pp., 1975.; Horbury, T. S. and Lucek, E. A.: Size, shape, and orientation of magnetosheath mirror mode structures, J. Geophys. Res., 114, A05217, doi:10.1029/2009JA014068, 2009.; Kivelson, M. and Southwood, D.: Mirror instability II: The mechanism of non-linear saturation, J. Geophys. Res., 101, 17365–17371, 1996.; Lucek, E. A., Dunlop, M. W., Balogh, A., Cargill, P., Baumjohann, W., Georgescu, E., Haerendel, G., and Fornacon, K.-H.: Mirror mode structures observed in the dawn-side magnetosheath by Equator-S, Geophys. Res. Lett., 26, 2159–2162, doi:10.1029/1999GL900490, 1999a.; Lucek, E. A., Dunlop, M. W., Balogh, A., Cargill, P., Baumjohann, W., Georgescu, E., Haerendel, G., and Fornacon, G.-H.: Identification of magnetosheath mirror modes in Equator-S magnetic field data, Ann. Geophys., 17, 1560–1573, doi:10.1007/s00585-999-1560-9, 1999b.; Midgley, J. E. and Davis Jr., L.: Calculation by a moment technique of the perturbation of the geomagnetic field by the solar wind, J. Geophys. Res., 68, p. 5111, 1963.; Stasiewicz, K.: Theory and observations of slow-mode solitons in space plasmas, Phys. Rev. Lett., 93(12), 125004, PMID:15447272, 2004.; Price, C. P., Swift, D. W., and Lee, L.-C.: Numerical Simulation of Nonoscillatory Mirror Waves at the Earth's Magnetosheath, J. Geophys. Res., 91(A1), 101–112, doi:10.1029/JA091iA01p00101, 1986.; Reme, H., Aoustin, C., Bosqued, J. M., et al.: First multispacecraft ion measurements in and near the Earth�s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, doi:10.5194/angeo-19-1303-2001, 2001.; Russell, C. T., Jian, L. K., Luhmann, J. G., Zhang, T. L., Neubauer, F. M., Skoug, R. M., Blanco-Cano, X., Omidi, N., and Cowee, M. M.: Mirror mode waves: Messengers from the coronal heating region, Geophys. Res. Lett., 35, L15101, doi:10.1029/2008GL034096, 2008.; Shi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q.-G., Liu, Z. X., Lucek, E., and Balogh, A.: Motion of observed structures calculated from multi-point magnetic field measurements: Application to Cluster, Geophys. Res. Lett., 33, L08109, doi:10.1029/2005GL025073, 2006.; Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q.-G., Zhang, H., Xiao, C. J., Liu, Z.


Click To View

Additional Books

  • Characteristics of Vlf Atmospherics Near... (by )
  • The Alfvén Resonator Revisited : Volume ... (by )
  • Lightning Stroke Distance Estimation fro... (by )
  • A Potential Lag Between the Open Solar M... (by )
  • Enhancement of Electric and Magnetic Wav... (by )
  • Variations of Topside Ionospheric Scale ... (by )
  • Relationship Between Solar Wind Corotati... (by )
  • Effects of a Moving X-line in a Time-dep... (by )
  • Reconstruction of the Gravity Wave Field... (by )
  • Coordinated Cluster/Double Star and Grou... (by )
  • The ~ 2400-year Cycle in Atmospheric Rad... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.