World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Transition of Flow Regime Along a Marine-terminating Outlet Glacier in East Antarctica : Volume 8, Issue 3 (13/05/2014)

By Callens, D.

Click here to view

Book Id: WPLBN0003983738
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Transition of Flow Regime Along a Marine-terminating Outlet Glacier in East Antarctica : Volume 8, Issue 3 (13/05/2014)  
Author: Callens, D.
Volume: Vol. 8, Issue 3
Language: English
Subject: Science, Cryosphere
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Matsuoka, K., Smith, B., Steinhage, D., Witrant, E., Callens, D., & Pattyn, F. (2014). Transition of Flow Regime Along a Marine-terminating Outlet Glacier in East Antarctica : Volume 8, Issue 3 (13/05/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium. We present results of a multi-methodological approach to characterize the flow regime of West Ragnhild Glacier, the widest glacier in Dronning Maud Land, Antarctica. A new airborne radar survey points to substantially thicker ice (>2000 m) than previously thought. With a discharge estimate of 13–14 Gt yr−1, West Ragnhild Glacier thus becomes of the three major outlet glaciers in Dronning Maud Land. Its bed topography is distinct between the upstream and downstream section: in the downstream section (<65 km upstream of the grounding line), the glacier overlies a wide and flat basin well below the sea level, while the upstream region is more mountainous. Spectral analysis of the bed topography also reveals this clear contrast and suggests that the downstream area is sediment covered. Furthermore, bed-returned power varies by 30 dB within 20 km near the bed flatness transition, suggesting that the water content at bed/ice interface increases over a short distance downstream, hence pointing to water-rich sediment. Ice flow speed observed in the downstream part of the glacier (~250 m yr−1) can only be explained through very low basal friction, leading to a substantial amount of basal sliding in the downstream 65 km of the glacier. All the above lines of evidence (sediment bed, wetness and basal motion) and the relatively flat grounding zone give the potential for West Ragnhild Glacier to be more sensitive to external forcing compared to other major outlet glaciers in this region, which are more stable due to their bed geometry (e.g. Shirase Glacier).

Summary
Transition of flow regime along a marine-terminating outlet glacier in East Antarctica

Excerpt
Arthern, R. J. and Gudmundsson, G. H.: Initialisation of Ice-Sheet Forecasts viewed as an Inverse Robin Problem, J. Glaciol., 56, 527–533, 2010.; Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, doi:10.5194/tc-3-101-2009, 2009.; Bindschadler, R. A., Choi, H., and ASAID Collaborators: High-Resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet, Digital media, National Snow and Ice Data Center, Boulder, Colorado, USA, 2011.; Bingham, R. G. and Siegert, M. J.: Quantifying subglacial bed roughness in Antarctica: implications for ice-sheet dynamics and history, Quaternary Sci. Rev., 28, 223–236, 2009.; Coleman, T. and Li, Y.: On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds, Math. Program., 67, 189–224, 1994.; Coleman, T. and Li, Y.: An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM J. Optimiz., 6, 418–445, 1996.; Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers, 4th Edn., Elsevier, New York, 2010.; Matsuoka, K., MacGregor, J. A., and Pattyn, F.: Predicting radar attenuation within the Antarctic ice sheet, Earth Planet. Sc. Lett., 359–360, 173–183, 2012.; Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, doi:10.5194/tc-7-375-2013, 2013.; Høydal, Ø. A.: A force-balance study of ice flow and basal conditions of Jutulstraumen, Antarctica, J. Glaciol., 42, 413–425, 1996.; Joughin, I.: Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195–201, 2002.; Joughin, I., Rignot, E., Rosanova, C. E., Lucchitta, B. K., and Bohlander, J.: Timing of Recent Accelerations of Pine Island Glacier, Antarctica, Geophys. Res. Lett., 30, 1706, doi:10.1029/2003GL017609, 2003.; Kamb, B. and Echelmeyer, K. A.: Stress-gradient Coupling in Glacier Flow: 1. Longitudinal Averaging of the Influence of Ice Thickness and Surface Slope, J. Glaciol., 32, 267–298, 1986.; Lythe, M. B., Vaughan, D. G., and BEDMAP consortium: BEDMAP: a new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res., 106, 11335–11351, 2001.; MacAyeal, D. R.: The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods, J. Geophys. Res., 97, 595–603, 1992.; MacAyeal, D. R.: A Tutorial on the Use of Control Methods in Ice-Sheet Modeling, J. Glaciol., 39, 91–98, 1993.; MacGregor, J. A., Winebrenner, D. P., Conway, H.,Matsuoka, K., Mayewski, P. A., and Clow, G. D.: Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data, J. Geophys. Res., 112, F03008, doi:10.1029/2006JF000717, 2007.; Matsuoka, K.: Pitfalls in radar diagnosis o

 

Click To View

Additional Books


  • Museum Bulletin Volume: no. 165 1913 (by )
  • Evaluation of the Cmip5 Models in the Ai... (by )
  • Air Temperature Variability Over Three G... (by )
  • Influence of Grain Shape on Light Penetr... (by )
  • The Philippine Journal of Science (by )
  • Transactions of the Kentucky Academy of ... Volume: v. 50-52 1989-91 (by )
  • On the Export of Dense Water from the We... (by )
  • The Sub-ice Platelet Layer and Its Influ... (by )
  • Long-term Coastal-polynya Dynamics in th... (by )
  • Vierteljahrsschrift Der Naturforschenden... Volume: v.63 (1919) (by )
  • Seasonal Variability of Subsurface High ... (by )
  • First Outcomes from the Cnr-isac Monthly... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.