World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Fabric Along the Neem Ice Core, Greenland, and Its Comparison with Grip and Ngrip Ice Cores : Volume 8, Issue 4 (01/07/2014)

By Montagnat, M.

Click here to view

Book Id: WPLBN0003987937
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Fabric Along the Neem Ice Core, Greenland, and Its Comparison with Grip and Ngrip Ice Cores : Volume 8, Issue 4 (01/07/2014)  
Author: Montagnat, M.
Volume: Vol. 8, Issue 4
Language: English
Subject: Science, Cryosphere
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Eichler, J., Azuma, N., Dahl-Jensen, D., Weikusat, I., Fujita, S., Montagnat, M.,...Samyn, D. (2014). Fabric Along the Neem Ice Core, Greenland, and Its Comparison with Grip and Ngrip Ice Cores : Volume 8, Issue 4 (01/07/2014). Retrieved from

Description: CNRS, LGGE, UMR5183, 38041 Grenoble, France. Fabric (distribution of crystallographic orientations) along the full NEEM ice core, Greenland was measured in the field by an automatic ice texture analyzer every 10 m, from 33 m down to 2461 m depth. The fabric evolves from a slightly anisotropic fabric at the top, toward a strong single maximum at about 2300 m, which is typical of a deformation pattern mostly driven by uniaxial compression and simple shearing. A sharp increase in the fabric strengthening rate is observed at the Holocene to Wisconsin (HW) climatic transition. From a simple model we estimate that this depth is located at a transition from a state dominated by vertical compression to a state dominated by vertical shear. Comparisons are made to two others ice cores drilled along the same ridge; the GRIP ice core, drilled at the summit of the ice sheet, and the NGRIP ice core, drilled 325 km to the NNW of the summit along the ridge, and 365 km upstream from NEEM. This comparison tends to demonstrate that the ice viscosity change with the HW climatic transition must be associated with the shear-dominated state to induce the abrupt fabric strengthening observed at NEEM. This comparison therefore reflects the increasing role of shear deformation on the coring site when moving NW along the ridge from GRIP to NGRIP and NEEM. The difference in fabric profiles between NEEM and NGRIP also evidences a stronger lateral extension associated with a sharper ridge at NGRIP. Further along the core, centimeter scale abrupt texture (fabric and microstructure) variations are observed in the bottom part of the core. Their positions are in good agreement with the observed folding layers in Dahl-Jensen et al. (2013).

Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores

Alley, R. B.: Fabrics in polar ice sheets – Development and prediction, Science, 240, 493–495, 1988.; Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38, 245–255, 1992.; Alley, R. B., Gow, A. J., Johnsen, S. J., Kipfstuhl, J., Meese, D. A., and Thorsteinsson, T.: Comparison of deep ice cores, Nature, 373, 393–394, doi:10.1038/373393b0, 1995.; Azuma, N. and Higashi, A.: Formation processes of ice fabric pattern in ice sheets, Ann. Glaciol., 6, 130–134, 1985.; Alley, R. B., Gow, A. J., Meese, D. A., Ftizpatrick, J. J., Waddington, E. D., and Bolzan, J. F.: Grain-scale processes, folding, and stratigraphic disturbance in the GISP2 ice core, J. Geophys. Res., 102, 26819–26830, 1997.; Azuma, N., Wang, Y., Mori, K., Narita, H., Hondoh, T., Shoji, H., and Watanabe, O.: Textures and fabrics in the Dome F (Antarctica) ice core, Ann. Glaciol., 29, 163–168, 1999.; Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, doi:10.5194/tc-7-499-2013, 2013.; Bargmann, S., Seddik, H., and Greve, R.: Computational modeling of flow-induced anisotropy of polar ice for the EDML deep drilling site, Antarctica: the effect of rotation recrystallization and grain boundary migration, Int. J. Numer. Anal. Met.., 36, 892–917, doi:10.1002/nag.1034, 2011.; Budd, W. and Jacka, T.: A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol., 16, 107–144, 1989.; Chappellaz, J., Blunier, T., Kints, S., Dallenbach, A., Barnola, J.-M., Schwander, J., Raynaud, D., and Stauffer, B.: Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene, J. Geophys. Res.-Atmos., 102, 15987–15997, doi:10.1029/97JD01017, 1997.; Cuffey, K. M.: Palaeoclimate: Into an ice age, Nature, 431, 133–134, 2004.; Dahl-Jensen, D., Gundestrup, N., Miller, H., Watanabe, O., Johnsen, S. J., Steffensen, J. P., Clausen, H. B., Svensson, A., and Larsen, L. B.: The NorthGRIP deep drilling programme., Ann. Glaciol., 35, 1–4, 2002.; Dahl-Jensen, D., Gundestrup, N., Gorgineni, S. P., and Miller, H.: Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations, Ann. Glaciol., 37, 207–212, 2003.; Dahl-Jensen, D., Albert, M. R., Aldahan, A., Azuma, N., Balslev-Clausen, D., Baumgartner, M., Berggren, A.-M., Bigler, M., Binder, T., Blunier, T., Bourgeois, J. C., Brook, E. J., Buchardt, S. L., Buizert, C., Capron, E., Chappellaz, J., Chung, J., Clausen, H. B., Cvijanovic, I., Davies, S. M., Ditlevsen, P., Eicher, O., Fischer, H., Fisher, D. A., Fleet, L. G., Gfeller, G., Gkinis, V., Gogineni, S., Goto-Azuma, K., Grinsted, A., Gudlaugsdottir, H., Guillevic, M., Hansen, S. B., Hansson, M., Hirabayashi, M., Hong, S., Hur, S. D., Huybrechts, P., Hvidberg, C. S., Iizuka, Y., Jenk, T., Johnsen, S. J., Jones, T. R., Jouzel, J., Karlsson, N. B., Kawamura, K., Keegan, K., Kettner, E., Kipfstuhl, S., Kjær, H. A., Koutnik, M., Kuramoto, T., Köhler, P., Laepple, T., Landais, A., Langen, P. L., Larsen, L. B., Leuenberger, D., Leuenberger, M., Leuschen, C., J. Li, V. L., Martinerie, P., Maselli, O. J., Masson-Delmotte, V., McConnell, J. R., Miller, H., Mini, O., Miyamoto, A., Montagnat-Rentier, M., Mulvaney, R., Muscheler, R., Orsi, A. J., Paden, J., Panton, C., Pattyn, F., Petit, J.-R., Pol, K., Popp, T., Possnert, G., Prié, F., Prokopiou, M., Quiquet, A., Rasmussen, S. O., Raynaud, D., Ren, J., Reutenauer, C., Ritz, C., Röckmann, T., Rosen, J. L., Rubino, M., Rybak, O., Samyn, D., Sapart, C. J., Schilt, A., Schmidt, A. M. Z., Schwander, J., Schüpbach, S., Seierstad, I., Severing


Click To View

Additional Books

  • Impact of Spatial Resolution on the Mode... (by )
  • Modeling of Wave-induced Irradiance Vari... (by )
  • A New Bed Elevation Dataset for Greenlan... (by )
  • Proceedings of the Royal Society of Vict... (by )
  • Mechanisms Controlling Primary and New P... (by )
  • A Three-dimensional Full Stokes Model of... (by )
  • Memorias Y Revista De La Sociedad Cientí... Volume: t.15 1900 (by )
  • Transactions of the Kentucky Academy of ... Volume: v. 12-13 1945-52 (by )
  • Assessing Spatio-temporal Variability an... (by )
  • Deep Currents in the Gulf of Guinea: Alo... (by )
  • Brief Communication: Ikaite (Caco3·6H2O)... (by )
  • Rendiconti (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.