World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

An Analysis of Present and Future Seasonal Northern Hemisphere Land Snow Cover Simulated by Cmip5 Coupled Climate Models : Volume 7, Issue 1 (21/01/2013)

By Brutel-vuilmet, C.

Click here to view

Book Id: WPLBN0003988183
Format Type: PDF Article :
File Size: Pages 14
Reproduction Date: 2015

Title: An Analysis of Present and Future Seasonal Northern Hemisphere Land Snow Cover Simulated by Cmip5 Coupled Climate Models : Volume 7, Issue 1 (21/01/2013)  
Author: Brutel-vuilmet, C.
Volume: Vol. 7, Issue 1
Language: English
Subject: Science, Cryosphere
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany

Citation

APA MLA Chicago

Krinner, G., Ménégoz, M., & Brutel-Vuilmet, C. (2013). An Analysis of Present and Future Seasonal Northern Hemisphere Land Snow Cover Simulated by Cmip5 Coupled Climate Models : Volume 7, Issue 1 (21/01/2013). Retrieved from http://www.ebooklibrary.org/


Description
Description: CNRS and UJF Grenoble 1, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE, UMR5183), 38041 Grenoble, France. The 20th century seasonal Northern Hemisphere (NH) land snow cover as simulated by available CMIP5 model output is compared to observations. On average, the models reproduce the observed snow cover extent very well, but the significant trend towards a reduced spring snow cover extent over the 1979–2005 period is underestimated (observed: (−3.4 ± 1.1)% per decade; simulated: (−1.0 ± 0.3)% per decade). We show that this is linked to the simulated Northern Hemisphere extratropical spring land warming trend over the same period, which is also underestimated, although the models, on average, correctly capture the observed global warming trend. There is a good linear correlation between the extent of hemispheric seasonal spring snow cover and boreal large-scale spring surface air temperature in the models, supported by available observations. This relationship also persists in the future and is independent of the particular anthropogenic climate forcing scenario. Similarly, the simulated linear relationship between the hemispheric seasonal spring snow cover extent and global mean annual mean surface air temperature is stable in time. However, the slope of this relationship is underestimated at present (observed: (−11.8 ± 2.7)% °C−1; simulated: (−5.1 ± 3.0)% °C−1) because the trend towards lower snow cover extent is underestimated, while the recent global warming trend is correctly represented.

Summary
An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models

Excerpt
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, doi:10.5194/tc-5-219-2011, 2011.; Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499, 2003.; Alexander, M. A., Tomas, R., Deser, C., and Lawrence, D. M.: The atmospheric response to projected terrestrial snow changes in the late twenty-first century, J. Climate, 23, 6430–6437, doi:10.1175/2010JCLI3899.1, 2010.; Brown, R. D.: Northern Hemisphere snow cover variability and change, 1915–1997. J. Climate, 13, 2339–2355, 2000.; Brown, R. D. and Frei, A.: Comment on Evaluation of surface albedo and snow cover in AR4 coupled models, edited by: Roesch, A., J. Geophys. Res., 112, D22102, doi:10.1029/2006JD008339, 2007.; Dewey, K. F.: Daily maximum and minimum temperature forecasts and the influence of snow cover, Mon. Weather Rev., 105, 1594–1597, 1977.; Derksen, C. and Brown, R.: Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections, Geophys. Res. Lett., 39, L19504, doi:10.1029/2012GL053387, 2012.; Déry, S. J. and Brown, R. D.: Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback, Geophys. Res. Lett., 34, L22504, doi:10.1029/2007GL031474,2007.; Dye, D.: Variability and trends in the annual snow cover cycle in Northern Hemisphere snow cover areas, 1972–2000, Hydrol. Processes, 16, 3065–3077, 2002.; Fletcher, C. G., Zhao, H., Kushner, P. J., and Fernandez, R.: Using models and satellite observations to evaluate the strength of snow albedo feedback, J. Geophys. Res., 117, D11117, doi:10.1029/2012JD017724, 2012.; Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climat models, J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972, 2008.; Groisman, P. Y., Karl, T. R., and Knight, R. W.: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures, Science, 263, 198–200, 1994.; Gouttevin, I., Menegoz, M., Dominé, F., Krinner, G., Koven, C., Ciais, P., Tarnocai, C., and Boike, J.: How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area, J. Geophys. Res., 117, G02020, doi:10.5194/tc-6-407-2012, 2012.; Hall, A. and Qu, X.: Using the current seasonal cycle to constrain snow albedo feedback in future climate change, Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127, 2006.; Hansen, J., Saito, M., Ruedy, R., Lo, K., Lea, D. W., and Medina-Elizade, M.: Global temperature change, Proc. Nat. Acad. Sci. USA, 103, 14288–14293, 2006.; Hourdin, F., Issartel, J.-P., Cabrit, B., and Idelkadi, A.: Reciprocity of atmospheric transport of trace species, C. R. Acad. Sci., 329, 623–628, 1999.; Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., and Morice, C. P.: Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010, J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139, 2012.; Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate feedbacks accelerate global warming, Proc. Nat. Acad. Sci. USA, 108, 14769–14774, 2011.; Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global ve

 

Click To View

Additional Books


  • 137Cs Off Fukushima Dai-ichi, Japan – Mo... (by )
  • Seasonal Cycle of Solar Energy Fluxes Th... (by )
  • Morphology and Distribution of Liquid In... (by )
  • Jahresbericht Der Schlesischen Gesellsch... Volume: 64. (1886) (by )
  • Estuarine Circulation Reversals and Rela... (by )
  • Future Arctic Marine Access: Analysis an... (by )
  • Issues Faced in Digitally Re-purposing P... (by )
  • Simultaneous Solution for Mass Trends on... (by )
  • Snowfall in the Himalayas: an Uncertain ... (by )
  • The Philippine Journal of Science (by )
  • Sea Ice Melt Pond Fraction Estimation fr... (by )
  • Quantifying the Jakobshavn Effect: Jakob... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.