World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Peak Glacial 14C Ventilation Ages Suggest Major Draw-down of Carbon Into the Abyssal Ocean : Volume 9, Issue 1 (13/02/2013)

By Sarnthein, M.

Click here to view

Book Id: WPLBN0003989419
Format Type: PDF Article :
File Size: Pages 41
Reproduction Date: 2015

Title: Peak Glacial 14C Ventilation Ages Suggest Major Draw-down of Carbon Into the Abyssal Ocean : Volume 9, Issue 1 (13/02/2013)  
Author: Sarnthein, M.
Volume: Vol. 9, Issue 1
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany


APA MLA Chicago

Grootes, P. M., Schneider, B., & Sarnthein, M. (2013). Peak Glacial 14C Ventilation Ages Suggest Major Draw-down of Carbon Into the Abyssal Ocean : Volume 9, Issue 1 (13/02/2013). Retrieved from

Description: Institut für Geowissenschaften, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany. Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase of ~ 100 ppm. A transfer of ~ 530 Gt C is required to produce the deglacial rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide 14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We assume that the range of regression slopes of DIC vs. Δ14C remained constant for LGM times, which implies that an average LGM aging by ~ 600 14C yr corresponded to a global rise by ~ 85–115 Μmol DIC kg−1 in the deep ocean. Thus, the prolonged residence time of ocean deep waters indeed made it possible to absorb an additional ~ 730–980 Gt DIC, ~ 1/3 of which transferred from intermediate waters. We infer that LGM deep-water O2 dropped to suboxic values of < 10 Μmol kg−1 in the Atlantic sector of the Southern ocean, possibly also in the subpolar North Pacific. The transfer of aged deep-ocean carbon to the atmosphere and the ocean-atmosphere exchange are sufficient to account for the 190-‰ drop in atmospheric 14C during the so-called HS-1 Mystery Interval.

Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean

Adkins, J. F., Cheng, H., Boyle, E. A., Druffel, E. R. M., and Edwards, R. L.: Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 yr ago, Science, 280, 725–728, 1998.; Archer, D. and Winguth, A.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–189, 2000.; Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Techn. Memorandum NESDIS, NGDC-24, 19 pp., 2009.; Anderson, R. F., Fleisher, M. Q., Lao, Y., and Winckler, G.: Modern CaCO3 preservation in equatorial Pacific sediments in the context of Late-Pleistocene glacial cycles, Mar. Chem., 111, 30–46, 2008.; Antia, A. N., Koeve, W., Fischer, G., Blanz, T., Schulz-Bull, D., Scholten, J., Neuer, S., Kremling, K., Kuss, J., Peinert, R., Hebbeln, D., Bathmann, U., Conte, M., Fehner, U., and Zeitzschel, B.: Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration, Global Biogeochem. Cy., 15, 845–862, 2001.; Archer, D., Martin, P., Buffett, B., Brovkin, V., Rahmstorf, S., and Ganopolski, A.: The importance of ocean temperature to global biogeochemistry, Earth Planet. Sc. Lett., 222, 333–348, 2004.; Bard, E.: Geochemical and geophysical implications of the radiocarbon calibration, Geochim. Cosmochim. Ac., 62, 2025–2038, 1998.; Barker, S., Knorr, G., Vautravers, M. J., Diz, P., and Skinner, L. C.: Extreme deepening of the Atlantic overturning circulation during deglaciation, Nat. Geosci., 3, 567–571, doi:10.1038/NGEO921, 2010.; Basak, C., Martin, E. E., Horikawa, K., and Marchitto, T. M.: Southern Ocean source of 14C-depleted carbon in north Pacific Ocean during the last deglaciation, Nat. Geosci., 3, 770–774, 2010.; Berger, W. H.: Deep-sea carbonates. Pleistocene dissolution cycles, J. Foramin. Res., 3, 187–193, 1973.; Berger, W. H. and Keir, R. S.: Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, AGU Geophys. Monogr., 29, 337–351, 1984.; Boyle, E. A.: The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon-dioxide, J. Geophys. Res.-Ocean, 93, 15701–15714, 1988a.; Boyle, E. A.: Vertical oceanic nutrient fractionation and glacial interglacial CO2 cycles, Nature, 331, 55–56, 1988b.; Broecker, W. S.: Glacial-to-interglacial changes in ocean chemistry, Prog. Oceanogr., 11, 151–197, 1982.; Broecker, W. S.: The great ocean conveyor, Oceanography, 4, 79–89, 1991.; Broecker, W. and Barker, S. A.: 190 \permil drop in atmosphere's Δ14C during the Mystery Interval, Earth Planet. Sc. Lett., 256, 90–99, 2007.; Broecker, W., Barker, S., Clark, E., Hajdas, I., Bonani, G., and Stott, L.: Ventilation of the Glacial deep Pacific Ocean, Science, 306, 1169–1172, 2004.; Broecker, W., Clark, E., Barker, S., Hajdas, I., Bonani, G., and Moreno, E.: Radiocarbon age of late glacial deep waters from the equatorial Pacific, Paleoceanography, 22, PA2206, doi:10.1029/2006PA001359, 2007.; Bryan, S. P., Marchitto, T. M., and Lehman, S. J.: The release of 14C-depleted carbon from the deep ocean during the last degla


Click To View

Additional Books

  • Hydrographic Changes in the Agulhas Reci... (by )
  • Water Mass Evolution of the Greenland Se... (by )
  • Controls of Caribbean Surface Hydrology ... (by )
  • Central African Biomes and Forest Succes... (by )
  • The Global Monsoon Across Time Scales: i... (by )
  • Maintenance of Polar Stratospheric Cloud... (by )
  • Tree-ring Inferred Glacier Mass Balance ... (by )
  • Using Synoptic Type Analysis to Understa... (by )
  • Carbon Isotope (Δ13C) Excursions Suggest... (by )
  • Exposure Dating of Late Glacial and Pre-... (by )
  • Evaluating Climate Model Performance wit... (by )
  • Late Holocene Climate Variability in the... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.