World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

On Large Plasmoid Formation in a Global Magnetohydrodynamic Simulation : Volume 29, Issue 1 (14/01/2011)

By Honkonen, I.

Click here to view

Book Id: WPLBN0003990071
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: On Large Plasmoid Formation in a Global Magnetohydrodynamic Simulation : Volume 29, Issue 1 (14/01/2011)  
Author: Honkonen, I.
Volume: Vol. 29, Issue 1
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Janhunen, P., Pulkkinen, T. I., Palmroth, M., Honkonen, I., & Aikio, A. (2011). On Large Plasmoid Formation in a Global Magnetohydrodynamic Simulation : Volume 29, Issue 1 (14/01/2011). Retrieved from http://www.ebooklibrary.org/


Description
Description: Finnish Meteorological Institute, Helsinki, Finland. We investigate plasmoid formation in the magnetotail using the global magnetohydrodynamic (MHD) simulation GUMICS-4. Here a plasmoid implies a major reconfiguration of the magnetotail where a part of the tail plasma sheet is ejected downstream, in contrast to small Earthward-propagating plasmoids. We define a plasmoid based solely on the structure of the closed (connected to the Earth at both ends) magnetic field line region. In this definition a plasmoid is partly separated from the ordinary closed field line region by lobe field lines or interplanetary field lines resulting from lobe reconnection. We simulate an event that occurred on 18 February 2004 during which four intensifications of the auroral electroject (AE) index occurred in 8 h. Plasmoids form in the simulation for two of the four AE intensifications. Each plasmoid forms as a result of two consecutive large and fast rotations of the interplanetary magnetic field (IMF). In both cases the IMF rotates 180 degrees at 10 degrees per minute, first from southward to northward and some 15 min later from northward to southward. The other two AE intencifications however are not associated with a plasmoid formation. A plasmoid does not form if either the IMF rotation speed or the angular change of the rotation are small. We also present an operational definition for these fully connected plasmoids that enables their automatic detection in simulations. Finally, we show mappings of the plasmoid footpoints in the ionosphere, where they perturb the polar cap boundary in both hemispheres.

Summary
On large plasmoid formation in a global magnetohydrodynamic simulation

Excerpt
Birn, J., Hesse, M., and Schindler, K.: Filamentary Structure of a Three-Dimensional Plasmoid, J. Geophys. Res., 94, 241–251, 1989.; Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, doi:10.5194/angeo-19-1207-2001, 2001.; Brackbill, J. U. and Barnes, D. C.: The Effect of Nonzero $\nabla\cdot$B on the Numerical Solution of the Magnetohydrodynamic Equations, J. Comput. Phys., 35, 426–430, 1980.; Coppi, B., Laval, G., and Pellat, R.: Dynamics of the Geomagnetic Tail, Phys. Rev. Lett., 16, 1207–1210, 1966.; Farr, N. L., Baker, D. N., and Wiltberger, M.: Complexities of a 3-D plasmoid flux rope as shown by an MHD simulation, J. Geophys. Res., 113, A12202, doi:10.1029/2008JA013328, 2008.; Furth, H. P., Killeen, J., and Rosenbluth, M. N.: Finite-Resistivity Instabilities of a Sheet Pinch, Phys. Fluids, 6, 459–484, doi:10.1063/1.1706761, 1963.; Hones Jr., E. W.: Substorm Processes in the Magnetotail: Comments on On Hot Tenuous Plasmas, Fireballs, and Boundary Layers in the Earth's Magnetotail by L. A. Frank, K. L. Ackerson, and R. P. Lepping, J. Geophys. Res., 82, 5633–5640, 1977.; Hones Jr., E. W.: Transient phenomena in the magnetotail and their relation to substorms, Space Sci. Rev., 23, 393–410, 1979.; Hones Jr., E. W., Baker, D. N., Bame, S. J., Feldman, W. C., Gosling, J. T., McComas, D. J., Zwickl, R. D., Slavin, J. A., Smith, E. J., and Tsurutani, B. T.: Structure of the magnetotail at 220 $R_{\rm E}$ and its response to geomagnetic activity, Geophys. Res. Lett., 11, 5–7, 1984.; Hones Jr, E. W., Birn, J., Baker, D. N., Bame, S. J., Feldman, W. C., McComas, D. J., Zwickl, R. D., Slavin, J. A., Smith, E. J., and Tsurutani, B. T.: Detailed examination of a plasmoid in the distant magnetotail with ISEE 3, Geophys. Res. Lett., 11, 1046–1049, 1984.; Hughes, W. J. and Sibeck, D. G.: On the 3-dimensional structure of plasmoids, Geophys. Res. Lett., 14, 636–639, 1987.; Moldwin, M. B. and Hughes, W. J.: Geomagnetic Substorm Association of Plasmoids, J. Geophys. Res., 98, 81–88, 1993.; Hsu, T.-S. and McPherron, R. L.: An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets, J. Geophys. Res., 107, A11, doi:10.1029/2000JA000125, 2002.; Ieda, A., Machida, S., Mukai, T., Saito, Y., Yamamoto, T., Nishida, A., Terasawa, T., and Kokubun. S.: Statistical analysis of the plasmoid evolution with Geotail observations, J. Geophys. Res., 103, 4453–4465, 1998.; Ieda, A., Fairfield, D. H., Mukai, T., Saito, Y., Kokubun, S., Liou, K., Meng, C.-I., Parks, G. K., and Brittnacher, M. J.: Plasmoid ejection and auroral brightenings, J. Geophys. Res., 106, 3845–3857, 2001.; Janhunen, P.: GUMICS-3 – a global ionosphere-magnetosphere coupling simulation with high ionospheric resolution, Proceedings of Environmental Modelling for Space-Based Applications, 18–20 September 1996, Eur. Space Agency Spec. Publ., ESA SP-392, available at: <a href=http://www.space.fmi.fi/ pjanhune/papers/ESTEC96/ESTEC96.ps.gz>http://www.space.fmi.fi/ pjanhune/papers/ESTEC96/ESTEC96.ps.gz, 1996.; Janhunen, P., Koskinen, H. E. J., and Pulkkinen, T. I.: A new global ionosphere-magnetosphere coupling simulation utilizing locally varying time step, Proceeding of Third International Conference on Substorms, Versailles, France, 12–17 May 1996, ESA SP-389, 1996.; Kivelson, M. G., Khurana, K. K., Walker, R. J., Kepko, L., and Xu, D.: Flux ropes, interhemispheric conjugacy, and magnetospheric current closure, J. Geophys. Res., 101, 27341–27350, 1996.; Kullen, A. and Janhunen, P.: Relation of polar auroral arcs to magne


 

Click To View

Additional Books


  • Ionosphere Dynamics Over Europe and West... (by )
  • The Redshifted Footpoints of Coronal Loo... (by )
  • An Experiment to Study and Control the L... (by )
  • Collisionless Reconnection: Mechanism of... (by )
  • On the Seasonal Effect of Orbital Variat... (by )
  • Bottom-type Scattering Layers and Equato... (by )
  • Turbulence Characteristics Inside Ionosp... (by )
  • Phase Space Structures Generated by Abso... (by )
  • Coupled Rotational Dynamics of Saturn's ... (by )
  • Time Evolution of High-altitude Plasma B... (by )
  • A Comparison of Satellite Scintillation ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.