World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Mending Milankovitch's Theory: Obliquity Amplification by Surface Feedbacks : Volume 10, Issue 1 (10/01/2014)

By Tabor, C. R.

Click here to view

Book Id: WPLBN0003990300
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Mending Milankovitch's Theory: Obliquity Amplification by Surface Feedbacks : Volume 10, Issue 1 (10/01/2014)  
Author: Tabor, C. R.
Volume: Vol. 10, Issue 1
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Poulsen, C. J., Pollard, D., & Tabor, C. R. (2014). Mending Milankovitch's Theory: Obliquity Amplification by Surface Feedbacks : Volume 10, Issue 1 (10/01/2014). Retrieved from

Description: Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA. Milankovitch's theory states that orbitally induced changes in high-latitude summer insolation dictate the waxing and waning of ice sheets. Accordingly, precession should dominate the ice-volume response because it most strongly modulates summer insolation. However, early Pleistocene (2.588–0.781 Ma) ice-volume proxy records vary almost exclusively at the frequency of the obliquity cycle. To explore this paradox, we use an Earth system model coupled with a dynamic ice sheet to separate the climate responses to idealized transient orbits of obliquity and precession that maximize insolation changes. Our results show that positive surface albedo feedbacks between high-latitude annual-mean insolation, ocean heat flux and sea-ice coverage, and boreal forest/tundra exchange enhance the ice-volume response to obliquity forcing relative to precession forcing. These surface feedbacks, in combination with modulation of the precession cycle power by eccentricity, help explain the dominantly 41 kyr cycles in global ice volume of the early Pleistocene.

Mending Milankovitch's theory: obliquity amplification by surface feedbacks

Abe-Ouchi, A., Segawa, T., and Saito, F.: Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423–438, doi:10.5194/cp-3-423-2007, 2007.; Bender, M. L.: Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth Planet. Sc. Lett., 204, 275–289, doi:10.1016/S0012-821X(02)00980-9, 2002.; Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quaternary Sci. Rev., 10, 297–317, doi:10.1016/0277-3791(91)90033-Q, 1991.; Birchfield, G. E., Weertman, J., and Lunde, A. T.: A paleoclimate model of northern hemispheric ice sheets, Quaternary Res., 15, 126–42, doi:10.1016/0033-5894(81)90100-9, 1981.; Clark, P. U. and Pollard, D.: Origin of the middle Pleistocene transition by ice sheet erosion of regolith, Paleoceanography, 13, 1–9, doi:10.1029/97PA02660, 1998.; Claussen, M.: Late Quaternary vegetation-climate feedbacks, Clim. Past, 5, 203–216, doi:10.5194/cp-5-203-2009, 2009.; Claussen, M., Fohlmeister, J., Ganopolski, A., and Brovkin, V.: Vegetation dynamics amplifies precessional forcing, Geophys. Res. Lett., 33, L09709, doi:10.1029/2006GL026111, 2006.; Cortijo, E., Lehman, S., Keigwin, L., Chapman, M., Paillard, D., and Labeyrie, L.: Changes in Meridional Temperature and Salinity Gradients in the North Atlantic Ocean ($30^\circ$–$72^\circ$ N) during the Last Interglacial Period, Paleoceanography, 14, 23–33, doi:10.1029/1998PA900004, 1999.; Crucifix, M. and Loutre, M. F.: Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis, Clim. Dynam., 19, 419–433, doi:10.1007/s00382-002-0234-z, 2002.; DeConto, R. M. and Pollard, D.: A coupled climate-ice sheet modeling approach to the Early Cenozoic history of the Antarctic ice sheet, Palaeogeogr. Palaeocl., 198, 39–52, doi:10.1016/S0031-0182(03)00393-6, 2003.; Erb, M. P., Broccoli, A. J., and Clement, A. C.: The contribution of radiative feedbacks to orbitally-driven climate change, J. Climate, 26, 5897–5914, doi:10.1175/JCLI-D-12-00419.1, 2013.; Gallimore, R. G. and Kutzbach, J. E.: Snow cover and sea ice sensitivity to generic changes in Earth orbital parameters, J. Geophys. Res., 100, 1103–1120, doi:10.1029/94JD02686, 1995.; Gallimore, R. G. and Kutzbach, J. E.: Role of orbitally induced changes in tundra area in the onset of glaciation, Nature, 381, 503–505, doi:10.1038/381503a0, 1996.; González-Sampériz, P., Leroy, S. A., Carrión, J. S., Fernández, S., García-Antón, M., Gil-García, M. J., Uzquiano, P., Valero-Garcés, B., and Figueiral, I.: Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula, Rev. Palaeobot. Palyno., 162, 427–457, doi:10.1016/j.revpalbo.2010.03.009, 2010.; Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's orbit: pacemaker of the ice age, Science, 194, 1121–1132, doi:10.1126/science.194.4270.1121, 1976.; Herrington, A. R. and Pouls


Click To View

Additional Books

  • Quality Assessment of Chronologies in La... (by )
  • Precessional and Half-precessional Clima... (by )
  • Potential Impact of the 74 Ka Toba Erupt... (by )
  • The Antarctic Ice Core Chronology (Aicc2... (by )
  • Where to Find 1.5 Million Yr Old Ice for... (by )
  • The Influence of the Circulation on Surf... (by )
  • Multi-periodic Climate Dynamics: Spectra... (by )
  • Climate and Co2 Modulate the C3/C4 Balan... (by )
  • Depositional Dynamics in the El'Gygytgyn... (by )
  • 2-d Reconstruction of Past Sea Level (19... (by )
  • The Edc3 Chronology for the Epica Dome C... (by )
  • Glacier Mass Balance Reconstruction by S... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.