World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Momentum and Buoyancy Transfer in Atmospheric Turbulent Boundary Layer Over Wavy Water Surface – Part 2: Wind–wave Spectra : Volume 20, Issue 5 (29/10/2013)

By Troitskaya, Yu. I.

Click here to view

Book Id: WPLBN0003990675
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Momentum and Buoyancy Transfer in Atmospheric Turbulent Boundary Layer Over Wavy Water Surface – Part 2: Wind–wave Spectra : Volume 20, Issue 5 (29/10/2013)  
Author: Troitskaya, Yu. I.
Volume: Vol. 20, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Troitskaya, Y. I., Baidakov, G. A., Zilitinkevich, S. S., Ezhova, E. V., Sergeev, D. A., Vdovin, M. I., & Kandaurov, A. A. (2013). Momentum and Buoyancy Transfer in Atmospheric Turbulent Boundary Layer Over Wavy Water Surface – Part 2: Wind–wave Spectra : Volume 20, Issue 5 (29/10/2013). Retrieved from http://www.ebooklibrary.org/


Description
Description: Institute of Applied Physics RAS, Nizhniy Novgorod, Nizhniy Novgorod, Russia. Drag and mass exchange coefficients are calculated within a self-consistent problem for the wave-induced air perturbations and mean velocity and density fields using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. This second part of the report is devoted to specification of the model elements: turbulent transfer coefficients and wave number-frequency spectra. It is shown that the theory agrees with laboratory and field experimental data well when turbulent mass and momentum transfer coefficients do not depend on the wave parameters. Among several model spectra better agreement of the theoretically calculated drag coefficients with TOGA (Tropical Ocean Global Atmosphere) COARE (Coupled Ocean–Atmosphere Response Experiment) data is achieved for the Hwang spectrum (Hwang, 2005) with the high frequency part completed by the Romeiser spectrum (Romeiser et al., 1997).

Summary
Momentum and buoyancy transfer in atmospheric turbulent boundary layer over wavy water surface – Part 2: Wind–wave spectra

Excerpt
Apel, J. R.: An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter, J. Geophys. Res., 99, 16269–16291, 1994.; Cox, C. S. and Munk W. H.: Statistics of the sea surface derived from sun glitter, J. Marine Res., 13, 198–227, 1954.; Brut, A., Butet, A., Durand, P., Caniaux, G., and Planton, S.: Air-sea exchanges in the equatorial area from the EQUALANT99 dataset: Bulk parametrizations of turbulent fluxes corrected for airflow distortion, Q. J. R. Meteorol. Soc., 131, 2497–2538, 2005.; Donelan, M. A. and Pierson, W. J.: Radar scattering and equilibrium ranges in wind-generated waves – with application to scatterometry, J. Geophys. Res. Oceans, 92, 4971–5029, 1987.; Drennan, W. M., Zhang, J., French, J. R., McCormick, C., and Black, P. G.: Turbulent fluxes in the hurricane boundary layer, Part II: Latent heat flux, J. Atmos. Sci., 64, 1103–1115, 2007.; Druzhinin, O. A., Troitskaya, Y. I., and Zilitinkevich, S. S.: Direct numerical simulation of a turbulent wind over a wavy water surface, J. Geophys. Res., 117, C00J05, doi:10.1029/2011JC007789, 2012.; Elfouhaily, T. B., Chapron, B., Katsaros, K. B., and Vandemark, D. J.: A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res., 107, 15781–15796, 1997.; Fabricant, A. L.: Quasilinear theory of wind waves generation, Izvestiya, Atmos. Ocean. Phys., 12, 858–862, 1976.; Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.: Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm, J. Climate, 16, 571–591, 2003.; Haberman, R.: Wave-induced distortions of a slightly stratified shear flow: a nonlinear critical-layer effect, J. Fluid Mech., 58, 727–736, 1973.; Hwang, P. A.: A study of the wavenumber spectra of short water waves in the ocean, Part 2: spectral model and mean square slope, J. Atmos. Ocean. Technol., 14, 1174–1186, 1997.; Makin, V. K., Kudryavtsev, V. N., and Mastenbroek, C.: Drag of the sea surface, Bound.-Lay. Meteorol., 73, 159–182, 1995.; Maslowe, S. A.: The generation of clear air turbulence by nonlinear waves, Stud. Appl. Math., 51, 1–16, 1972.; Hwang, P. A.: Wave number spectrum and mean square slope of intermediate-scale ocean surface waves, J. Geophys. Res., 110, C10029, doi:10.1029/2005JC003002, 2005.; Hwang, P. A. and Wang, D. W.: An empirical investigation of source term balance of small scale surface waves, Geophys. Res. Lett., 31, L15301, doi:10.1029/2004GL020080, 2004.; Hwang, P. A., Atakturk, S., Sletten, M. A., and Trizna, D. B.: A study of the wavenumber spectra of short water waves in the ocean, J. Phys. Oceanogr., 26, 1266–1285, 1996.; Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B., and Swift, R. N.: Airborne measurements of the wavenumber spectra of ocean surface waves, Part 1: spectral slope and dimensionless spectral coefficient, J. Phys. Oceanogr., 30, 2753–2767, 2001a.; Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B., and Swift R. N.: Airborne measurements of the wavenumber spectra of ocean surface waves. Part 2: directional distribution, J. Phys. Oceanogr., 30, 2768–2787, 2001b.; Janssen, P. A. E. M.: Quasi-linear theory of wind wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, 1631–1642, 1991.; Jenkins, A. D.: Quasi-linear eddy-viscosity model for the flux of energy and momentum to wind waves using conservation-law equations in a curvilinear coordinate system, J. Phys. Oceanogr., 22, 843–858, 1992.; Liu, W. T., Katsaros, K. B., and Businger, J. A.: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface, J. Atmos. Sci., 36, 1722–1735, 1979.; Makin, V. K. and Kudryavtsev, V. N.: Coupled sea surface-atmosphere model, Part 1. Wind over waves cou

 

Click To View

Additional Books


  • Non-linear Quenching of Current Fluctuat... (by )
  • Forced Versus Coupled Dynamics in Earth ... (by )
  • Model of Strong Stationary Vortex Turbul... (by )
  • Correlation-based Characterisation of Ti... (by )
  • Short-term Prediction of Rain Attenuatio... (by )
  • Analysis of Asymmetries in Propagating M... (by )
  • Scaling Property of Ideal Granitic Seque... (by )
  • Double Rank-ordering Technique of Roma (... (by )
  • Factors Affecting Multiscaling Analysis ... (by )
  • Characteristic Scales in Landslide Model... (by )
  • Finite Larmor Radius Influence on Mhd So... (by )
  • Multiple Scale Error Growth in a Convect... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.