World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Impact of Transport Model Errors on the Global and Regional Methane Emissions Estimated by Inverse Modelling : Volume 13, Issue 19 (08/10/2013)

By Locatelli, R.

Click here to view

Book Id: WPLBN0003991239
Format Type: PDF Article :
File Size: Pages 21
Reproduction Date: 2015

Title: Impact of Transport Model Errors on the Global and Regional Methane Emissions Estimated by Inverse Modelling : Volume 13, Issue 19 (08/10/2013)  
Author: Locatelli, R.
Volume: Vol. 13, Issue 19
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Saunois, M., Krol, M., Kawa, S. R., Chevallier, F., Wilson, C., Prinn, R. G.,...Bian, H. (2013). Impact of Transport Model Errors on the Global and Regional Methane Emissions Estimated by Inverse Modelling : Volume 13, Issue 19 (08/10/2013). Retrieved from http://www.ebooklibrary.org/


Description
Description: Laboratoire des Sciences du Climat et de l'Environnement, LSCE – UMR8212,Gif sur Yvette, France. A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes.

In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.

Future inversions should include more accurately prescribed observation covariances matrices in order to limit the impact of transport model errors on estimated methane fluxes.


Summary
Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

Excerpt
Allan, W., Struthers, H., and Lowe, D. C.: Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements, J. Geophys. Res., 112, D04306, doi:10.1029/2006JD007369,2007.; Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, doi:10.1029/2000GB001382, 2001.; Arakawa, A. and Schubert, W.: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I, J. Atmos. Sci., 31, 674–701, 2:0:CO;2>doi:10:1175/1520-0469(1974)031<0674:IOACCE>2:0:CO;2, 1974.; Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A., Blake, D. R., Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air, Nature, 476, 198–201, doi:10.1038/nature10352, 2011.; Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002, doi:10.1029/2004GB002439, 2006.; Bechtold, P., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteorol. Soc., 1337–1351, doi:10:1002/qj:289, 2008.; Belikov, D., Maksyutov, S., Miyasaka, T., Saeki, T., Zhuravlev, R., and Kiryushov, B.: Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM, Geosci. Model Dev., 4, 207–222, doi:10.5194/gmd-4-207-2011, 2011.; Belikov, D. A., Maksyutov, S., Krol, M., Fraser, A., Rigby, M., Bian, H., Agusti-Panareda, A., Bergmann, D., Bousquet, P., Cameron-Smith, P., Chipperfield, M. P., Fortems-Cheiney, A., Gloor, E., Haynes, K., Hess, P., Houweling, S., Kawa, S. R., Law, R. M., Loh, Z., Meng, L., Palmer, P. I., Patra, P. K., Prinn, R. G., Saito, R., and Wilson, C.: Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection, Atmos. Chem. Phys., 13, 1093–1114, doi:10.5194/acp-13-1093-2013, 2013.; Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peters, W., and Dlugokencky, E. J.: Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5, Atmos. Chem. Phys., 5, 2431-2460, doi:10.5194/acp-5-2431-2005, 2005.; Bergamaschi, P., Krol, M., Meirink, J. F., Dentener, F., Segers, A., van Aardenne, J., Monni, S., Vermeulen, A. T., Schmidt, M., Ramonet, M., Yver, C., Meinhardt, F., Nisbet, E. G., Fisher, R. E., O'Doherty, S., and Dlugokencky, E. J.: Inverse modeling of European CH4 emissions 2001–2006, J. Geophys. Res., 115, D22309, doi:10.1029/2010JD014180, 2010.; Bian, H., Kawa, S. R., Chin, M., Pawson, S., Zhu, Z., Rasch, P., and Wu, S.: A test of sensitivity to convective transport in a global atmospheric CO2 simulation, Tellus B, 58, 463–475,


 

Click To View

Additional Books


  • Modeling of Saharan Dust Outbreaks Over ... (by )
  • Prognostic Precipitation with Three Liqu... (by )
  • A Computationally Efficient Inorganic At... (by )
  • Mesoscale Modeling of Combined Aerosol a... (by )
  • Organic Aerosol Concentration and Compos... (by )
  • Fast Transport from Southeast Asia Bound... (by )
  • The Effect of Climate Change and Emissio... (by )
  • Comparing the Effectiveness of Recent Al... (by )
  • The Sensitivity of Global Climate to the... (by )
  • Introduction: the Pan-eurasian Experimen... (by )
  • A Quantitative Analysis of Grid-related ... (by )
  • Claas: the Cm Saf Cloud Property Data Se... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.