World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Description and Evaluation of Gmxe: a New Aerosol Submodel for Global Simulations (V1) : Volume 3, Issue 2 (20/05/2010)

By Pringle, K. J.

Click here to view

Book Id: WPLBN0003991703
Format Type: PDF Article :
File Size: Pages 58
Reproduction Date: 2015

Title: Description and Evaluation of Gmxe: a New Aerosol Submodel for Global Simulations (V1) : Volume 3, Issue 2 (20/05/2010)  
Author: Pringle, K. J.
Volume: Vol. 3, Issue 2
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Metzger, S., Steil, B., Nenes, A., Vignati, E., Fountoukis, C., Giannadaki, D.,...Lelieveld, J. (2010). Description and Evaluation of Gmxe: a New Aerosol Submodel for Global Simulations (V1) : Volume 3, Issue 2 (20/05/2010). Retrieved from

Description: Max Planck Institute for Chemistry, Mainz, Germany. We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe) implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8). The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004).

The main developments in this work are: (i) the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable) number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium), (ii) the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii) the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry.

Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations). The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2). In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.

Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)

Adams, P. J., Seinfeld, J. H., and Koch, D. M.: Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model, J. Geophys. Res.-Atmos., 104, 13791–13823, doi:10.1029/1999JD900083, 1999.; Adams, P. J., Seinfeld, J. H., Koch, D. M., Mickley, L. J., and Jacob, D. J.: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system, J. Geophys. Res.-Atmos., 106, 1097–1111, 2001.; Ames, R. B. and Malm, W. C.: Comparison of sulfate and nitrate particle mass concentrations measured by IMPROVE and the CDN, Atmos. Environ., 35, 905–916, 2001.; Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556, doi:10.5194/acp-9-543-2009, 2009.; Fuchs, N.: Evaporation and droplet growth in gaseous media, Pergamon Press, 1959.; Fuchs, N.: The Mechanics of aerosols, Pergamon Press, 1964.; Bauer, S. E. and Koch, D.: Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model, J. Geophys. Res.-Atmos., 110, D17202, doi:10.1029/2005JD005870, 2005.; Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.: Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone, J. Geophys. Res.-Atmos., 7, 5043–5059, 2007.; Capaldo, K., Pilinis, C., and Pandis, S. N.: A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models, Atmos. Environ., 34, 3617–3627, 2000.; Castro, P. and Huber, M. E.: Marine Biology, McGraw-Hill, 2003.; Clarisse, L., Clerbaux, C., Dentener, F. Hurtmans, D., and Coheur, P.-F.: Global ammonia distribution derived from infrared satellite observations, Nature Geosci., 2, 479–483, 2009.; Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, doi:10.5194/acp-6-4321-2006, 2006.; Derwent, R., Collins, W., Jenkin, M., Johnson, C., and Stevenson, D.: The Global Distribution of Secondary Particulate Matter in a 3-D Lagrangian Chemistry Transport Model, J. Atmos. Chem., 44, 57–95, 2003.; Feng, Y. and Penner, Y.: Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry, J. Geophys. Res.-Atmos., 112, D01304, doi:10.1029/2005JD006404, 2007.; Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., M., S., and Dorland, R. V.: Integovernmental Panel on Climate Change, chap. Changes in Atmospheric Constituents and in Radiative Forcing, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.; Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+�Ca2+�Mg2+�NH4+�Na+�SO42-�NO3-�Cl-�H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007, 2007.; Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Van Reken, T., Fi


Click To View

Additional Books

  • The Potential of an Observational Data S... (by )
  • Il-globo (1.0) – Integrated Lagrangian P... (by )
  • Crop Physiology Calibration in Clm : Vol... (by )
  • Vertical Resolution Dependence of Gravit... (by )
  • Evaluation of Dust and Trace Metal Estim... (by )
  • Modelling of Primary Aerosols in the Che... (by )
  • Study of the Jacobian of an Extended Kal... (by )
  • Icechrono V1: a Probabilistic Model to C... (by )
  • Costrice – Three Model Online Coupling U... (by )
  • Pliocene Model Intercomparison Project (... (by )
  • Improving the Representation of Secondar... (by )
  • A Simplified Gross Primary Production an... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.