World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties : Volume 14, Issue 19 (09/10/2014)

By Ebmeier, S. K.

Click here to view

Book Id: WPLBN0003992785
Format Type: PDF Article :
File Size: Pages 18
Reproduction Date: 2015

Title: Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties : Volume 14, Issue 19 (09/10/2014)  
Author: Ebmeier, S. K.
Volume: Vol. 14, Issue 19
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Mather, T. A., Grainger, R. G., Sayer, A. M., Ebmeier, S. K., & Carboni, E. (2014). Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties : Volume 14, Issue 19 (09/10/2014). Retrieved from

Description: COMET, School of Earth Sciences, University of Bristol, Park Street, Bristol, UK. The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002–2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002–2008) data. Retrievals of aerosol and cloud properties at Kīlauea (Hawai'i), Yasur (Vanuatu) and Piton de la Fournaise (la Réunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes – including those from passive degassing, Strombolian activity and minor explosions – lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2–8 μm at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm−2 at distances of 150–400 km from the volcano, with much greater local (< 80 km) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere.

Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties

Ackerman, A. S., Toon, O. B., Taylor, J. P., Johnson, D. W., Hobbs, P. V., and Ferek, R. J.: Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks, J. Atmos. Sci., 57, 2684–2695, 2.0.CO;2>doi:10.1175/1520-0469(2000)057<2684:EOAOCA>2.0.CO;2, 2000.; Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, 2004.; Ackerman, S., Holz, R., Frey, R., Eloranta, E., Maddux, B., and McGill, M.: Cloud detection with MODIS. Part II: validation, J. Atmos. Ocean. Tech., 25, 1073–1086, doi:10.1175/2007JTECHA1053.1, 2008.; Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, Science, New York, NY, 245, 1227–1230, doi:10.1126/science.245.4923.1227, 1989.; Allen, A., Oppenheimer, C., Ferm, M., Baxter, P., Horrocks, L., Galle, B., McGonigle, A., and Duffell, H.: Primary sulfate aerosol and associated emissions from Masaya Volcano, Nicaragua, J. Geophys. Res., 107, 4682, doi:10.1029/2002JD002120, 2002.; Andreae, M. O.: Aerosols before pollution, Science (Washington), 315, 50–51, doi:10.1126/science.1136529, 2007.; Andres, R. and Kasgnoc, A.: A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25251–25, 1998.; Bani, P. and Lardy, M.: Sulphur dioxide emission rates from Yasur volcano, Vanuatu archipelago, Geophys. Res. Lett., 34, L20309, doi:10.1029/2007GL030411, 2007.; Bani, P., Oppenheimer, C., Allard, P., Shinohara, H., Tsanev, V., Carn, S., Lardy, M., and Garaebiti, E.: First estimate of volcanic SO2 budget for Vanuatu island arc, Journal of Volcanology and Geothermal Research, 211, 36–46, doi:10.1016/j.jvolgeores.2011.10.005, 2012.; Bhugwant, C., Siéja, B., Bessafi, M., Staudacher, T., and Ecormier, J.: Atmospheric sulfur dioxide measurements during the 2005 and 2007 eruptions of the Piton de La Fournaise volcano: Implications for human health and environmental changes, Journal of Volcanology and Geothermal Research, 184, 208–224, doi:10.1016/j.jvolgeores.2009.04.012, 2009.; Brenguier, J., Pawlowska, H., and Schüller, L.: Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate, J. Geophys. Res., 108, 8632, doi:10.1029/2002JD002682, 2003.; Campmany, E., Grainger, R. G., Dean, S. M., and Sayer, A. M.: Automatic detection of ship tracks in ATSR-2 satellite imagery, Atmos. Chem. Phys., 9, 1899–1905, doi:10.5194/acp-9-1899-2009, 2009.; Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71, doi:10.1038/nature12674, 2013.; Chen, Y.-C., Christensen, M. W., Xue, L., Sorooshian, A., Stephens, G. L., Rasmussen, R. M., and Seinfeld, J. H.: Occurrence of lower cloud albedo in ship tracks, Atmos. Chem. Phys., 12, 8223–8235, doi:10.5194/acp-12-8223-2012, 2012.; Christensen, M. W. and


Click To View

Additional Books

  • Assessing the Ammonium Nitrate Formation... (by )
  • Urban Aerosol Number Size Distributions ... (by )
  • Real Refractive Indices and Volatility o... (by )
  • Enhanced Solar Energy Absorption by Inte... (by )
  • Measuring Atmospheric Co2 from Space Usi... (by )
  • Incorporation of Advanced Aerosol Activa... (by )
  • Emissions of Biogenic Volatile Organic C... (by )
  • Increased Absorption by Giant Aerosol Pa... (by )
  • Characterization of Volatile Organic Com... (by )
  • Long-term Trends in Aerosol Optical Char... (by )
  • Composition of Semi-volatile Organic Com... (by )
  • Ground-based Remote Sensing of Hdo/H2O R... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.