World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Impacts of Aviation Fuel Sulfur Content on Climate and Human Health : Volume 15, Issue 13 (10/07/2015)

By Kapadia, Z. Z.

Click here to view

Book Id: WPLBN0003993270
Format Type: PDF Article :
File Size: Pages 41
Reproduction Date: 2015

Title: Impacts of Aviation Fuel Sulfur Content on Climate and Human Health : Volume 15, Issue 13 (10/07/2015)  
Author: Kapadia, Z. Z.
Volume: Vol. 15, Issue 13
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Spracklen, D. V., Pringle, K. J., Mann, G. W., Yoshioka, M., Benduhn, F., Kapadia, Z. Z.,...Reddington, C. L. (2015). Impacts of Aviation Fuel Sulfur Content on Climate and Human Health : Volume 15, Issue 13 (10/07/2015). Retrieved from

Description: Doctoral Training Centre in Low Carbon Technologies, Energy Research Institute, School of Process Environmental and Materials Engineering, University of Leeds, Leeds, UK. Aviation emissions impact both air quality and climate. Using a coupled tropospheric chemistry-aerosol microphysics model we investigate the effects of varying aviation fuel sulfur content (FSC) on premature mortality from long-term exposure to aviation-sourced PM2.5 (particulate matter with a dry diameter of < 2.5 Μm) and on the global radiation budget due to changes in aerosol and tropospheric ozone. We estimate that present-day non-CO2 aviation emissions with a typical FSC of 600 ppm result in 3597 (95 % CI: 1307–5888) annual mortalities globally due to increases in cases of cardiopulmonary disease and lung cancer, resulting from increased surface PM2.5 concentrations. We quantify the global annual mean combined radiative effect (REcomb) of non-CO2 aviation emissions as −13.3 mW m−2; from increases in aerosols (direct radiative effect and cloud albedo effect) and tropospheric ozone.

Ultra-low sulfur jet fuel (ULSJ; FSC =15 ppm) has been proposed as an option to reduce the adverse health impacts of aviation-induced PM2.5. We calculate that swapping the global aviation fleet to ULSJ fuel would reduce the global aviation-induced mortality rate by 624 (95 % CI: 227–1021) mortalities a−1 and increase REcomb by +7.0 mW m−2.

We explore the impact of varying aviation FSC between 0–6000 ppm. Increasing FSC increases annual mortality, while enhancing climate cooling through increasing the aerosol cloud albedo effect (aCAE). We explore the relationship between the injection altitude of aviation emissions and the resulting climate and air quality impacts. Compared to the standard aviation emissions distribution, releasing aviation emissions at the ground increases global aviation-induced mortality and produces a net warming effect, primarily through a reduced aCAE. Aviation emissions injected at the surface are 5 times less effective at forming cloud condensation nuclei, reducing the aviation-induced aCAE by a factor of 10. Applying high FSCs at aviation cruise altitudes combined with ULSJ fuel at lower altitudes result in reduced aviation-induced mortality and increased negative RE compared to the baseline aviation scenario.

Impacts of aviation fuel sulfur content on climate and human health

Arnold, S. R., Chipperfield, M. P., and Blitz, M. A.: A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis, J. Geophys. Res.-Atmos., 110, D22305, doi:10.1029/2005JD005998, 2005.; Balkanski, Y., Myhre, G., Gauss, M., Rädel, G., Highwood, E. J., and Shine, K. P.: Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation, Atmos. Chem. Phys., 10, 4477–4489, doi:10.5194/acp-10-4477-2010, 2010.; Barahona, D., West, R. E. L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations, Atmos. Chem. Phys., 10, 2467–2473, doi:10.5194/acp-10-2467-2010, 2010.; Airbus: A318/A319/A320/A321 FCTM (Flight Crew Training Manual), FCA A318/A319/A320/A321 FLEET, 2008.; Anderson, B. E., Chen, G., and Blake, D. R.: Hydrocarbon emissions from a modern commercial airliner, Atmos. Environ., 40, 3601–3612, doi:10.1016/j.atmosenv.2005.09.072, 2006.; ASTM International: D1655-11b: Standard Specification for Aviation Turbine Fuels, ASTM International, West Conshohocken, PA, USA, 2012.; Barrett, S. R. H., Britter, R. E., and Waitz, I. A.: Global mortality attributable to aircraft cruise emissions, Environ. Sci. Technol., 44, 7736–7742, doi:10.1021/es101325r, 2010.; Barrett, S. R. H., Yim, S. H. L., Gilmore, C. K., Murray, L. T., Kuhn, S. R., Tai, A. P. K., Yantosca, R. M., Byun, D. W., Ngan, F., Li, X., Levy, J. I., Ashok, A., Koo, J., Wong, H. M., Dessens, O., Balasubramanian, S., Fleming, G. G., Pearlson, M. N., Wollersheim, C., Malina, R., Arunachalam, S., Binkowski, F. S., Leibensperger, E. M., Jacob, D. J., Hileman, J. I., and Waitz, I. A.: Public health, climate, and economic impacts of desulfurizing jet fuel, Environ. Sci. Technol., 46, 4275–4282, doi:10.1021/es203325a, 2012.; Benduhn, F., Mann, G. W., Pringle, K. J., Topping, D., McFiggans, G., and Carslaw, K. S.: A computationally efficient hybrid solver of inorganic dissolution for use in global models: I. Description, validation and first results, in preparation, 2015.; Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203, doi:10.1029/2003JD003697, 2004.; Breider, T. J., Chipperfield, M. P., Richards, N. A. D., Carslaw, K. S., Mann, G. W., and Spracklen, D. V.: Impact of BrO on dimethylsulfide in the remote marine boundary layer, Geophys. Res. Lett., 37, L02807, doi:10.1029/2009GL040868, 2010.; Burkhardt, U. and Karcher, B.: Global radiative forcing from contrail cirrus, Nature Clim. Change, 1, 54–58, 2011.; Chipperfield, M. P.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: intercomparison of stratospheric tracer experiments, Q. J. Roy. Meteor. Soc., 132, 1179–1203, doi:10.1256/qj.05.51, 2006.; DuBois, D. and Paynter, G. C.: Fuel Flow Method2 for Estimating Aircraft Emissions, SAE Technical Paper Series, 01, 2006.; Dessens, O., Köhler, M. O., Rogers, H. L., Jones, R. L., and Pyle, J. A.: Aviation and climate change, Transp. Policy, 34, 14–20, doi:10.1016/j.tranpol.2014.02.014, 2014.; Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., and Speizer, F. E.: An


Click To View

Additional Books

  • Physical and Optical Properties of 2010 ... (by )
  • Suppression of New Particle Formation fr... (by )
  • Estimation of the Mass Absorption Cross ... (by )
  • Long-term Volatility Measurements of Sub... (by )
  • A Model Study of the Eastern Mediterrane... (by )
  • Numerical Modeling of Lower Stratospheri... (by )
  • Latitude-time Variations of Atmospheric ... (by )
  • Observation and Analysis of Speciated At... (by )
  • Method Development Estimating Ambient Me... (by )
  • Reformulating Atmospheric Aerosol Thermo... (by )
  • Morphology, Composition and Mixing State... (by )
  • Climatology of Stratocumulus Cloud Morph... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.