World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Impacts of New Particle Formation on Aerosol Cloud Condensation Nuclei (Ccn) Activity in Shanghai: Case Study : Volume 14, Issue 20 (29/10/2014)

By Leng, C.

Click here to view

Book Id: WPLBN0003993461
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Impacts of New Particle Formation on Aerosol Cloud Condensation Nuclei (Ccn) Activity in Shanghai: Case Study : Volume 14, Issue 20 (29/10/2014)  
Author: Leng, C.
Volume: Vol. 14, Issue 20
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany

Citation

APA MLA Chicago

Li, X., Cheng, T., Leng, C., Kong, L., Zhang, D., Qiao, L.,...Yang, X. (2014). Impacts of New Particle Formation on Aerosol Cloud Condensation Nuclei (Ccn) Activity in Shanghai: Case Study : Volume 14, Issue 20 (29/10/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan-Tyndall Centre, Department of environmental science and engineering, Fudan University, Shanghai 200433, China. New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a factor of 1.2–1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a rate of 4.33 Μg cm−3 h−1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h−1 and 0.36 cm−3 s−1, respectively. The newly formed particles grew quickly from nucleation mode (10–20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4–1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN/NCN) were significantly enhanced from 0.24–0.60 to 0.30–0.91 at SS of 0.2–1.0% due to the NPF. On the basis of the Κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2=0.96, Npredicted/Nmeasured=1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra; thus, it significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g., 1.0%) conditions.

Summary
Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study

Excerpt
Zheng, J., Hu, M., Zhang, R., Yue, D., Wang, Z., Guo, S., Li, X., Bohn, B., Shao, M., He, L., Huang, X., Wiedensohler, A., and Zhu, T.: Measurements of gaseous H2SO4 by AP-ID-CIMS during CAREBeijing 2008 Campaign, Atmos. Chem. Phys., 11, 7755–7765, doi:10.5194/acp-11-7755-2011, 2011.; Benson, D. R., Yu, J. H., Markovich, A., and Lee, S.-H.: Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere, Atmos. Chem. Phys., 11, 4755–4766, doi:10.5194/acp-11-4755-2011, 2011.; Birmili, W. and Wiedensohler, A.: New particle formation in the continental boundary layer: meteorological and gas phase parameter influence, Geophys. Res. Lett., 27, 3325–3328, doi:10.1029/1999GL011221, 2000.; Carslaw, K. S., Spracklen, D. S., Kulmala, M., Kerminen, V. M., Sihto, S. L., and Riipinen, I.: The impact of boundary layer nucleation on global CCN, Aip. Conf. Proc., 911–915, 2007.; Cheng, T. T., Han, Z. W., Zhang, R. J., Du, H. H., Jia, X., Wang, J. J., and Yao, J. Y.: Black carbon in a continental semi-arid area of Northeast China and its possible sources of fire emission, J. Geophys. Res., 115, D23204, doi:10.1029/2009JD013523, 2010.; Cheng, Y., Lee, S. C., Ho, K. F., Wang, Y. Q., Cao, J. J., Chow, J. C., and Watson, J. G.: Black carbon measurement in a coastal area of south China, J. Geophys. Res., 111, D12310, doi:10.1029/2005JD006663, 2006.; Dal Maso, M., Kulmala, M., Lehtinen, K. E. J., and Mäkelä, J. M.: Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers, J. Geophys. Res., 107, doi:10.1029/2001JD001053, 2002.; Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K. E. J.: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland, Boreal Env. Res., 10, 323–336, 2005.; Dal Maso, M., Sogacheva, L., Aalto, P. P., Riipinen, I., Komppula, M., Tunved, P., Korhonen, L., Suur-Uski, V., Hirsikko, A., Kurtén, T., Kerminen, V. -M., Lihavainen, H., Viisanen, Y., Hansson, H. -C., and Kulmala, M.: Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts, Tellus, 59B, 350–361, 2007.; Du, H. H., Kong, L. D., Cheng, T. T., Chen, J. M., Du, J. F., Li, L., Xia, X., Leng. C. P., and Huang, G. H.: Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols, Atmos. Environ., 45, 5131–5137, 2011.; Du, J. F., Cheng, T. T., Zhang, M., Chen, J. M., He, Q. S.,Wang, X. M., Zhang, R. J., Tao, J., Huang, G. H., Li, X., and Zha, S. P.: Aerosol size spectra and particle formation events at urban Shanghai in eastern China, Aerosol Air Qual. Res., 12, 1362–1372, 2012.; Dumka, U. C., Krishna Moorthy, K., Kumar, R., Hegde, P., Sagar, R., Pant, P., Singh, N., and Suresh Babu, S.: Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements, Atmos. Res., 96, 510–521, 2010.; Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Juuninen, H., Pullinen, L., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna

 

Click To View

Additional Books


  • Tethered Balloon Measurements of Biogeni... (by )
  • Seasonal and Annual Variation of Carbon ... (by )
  • The Potential Importance of Frost Flower... (by )
  • The Origin of Sea Salt in Snow on Arctic... (by )
  • Vertical Variation of Optical Properties... (by )
  • Partitioning Between the Inorganic Chlor... (by )
  • Transcom Model Simulations of Ch4 and Re... (by )
  • Fossil Vs. Non-fossil Sources of Fine Ca... (by )
  • Glyoxal Vertical Columns from Gome-2 Bac... (by )
  • Method for Evaluating Trends in Greenhou... (by )
  • Air–snowpack Exchange of Bromine, Ozone ... (by )
  • Atmospheric Transport Simulations in Sup... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.